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Abstract 

In this paper, we investigate the effects of scale and zone configuration on migration 

indicators and spatial interaction model parameters using a software system known as the 

IMAGE Studio. Internal migration flows in the United Kingdom and the local authority districts 

between which they move are aggregated into sets of increasingly fewer and larger polygons 

using alternative zone design algorithms. Indicators of migration intensity, impact and 

distance are revealed to vary significantly by scale but less so by zonation, whereas migration 

effectiveness and distance show greater scale independence but more sensitivity to zone 

configuration. 
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1. Introduction 

Spatial analysts are now familiar with the axiom that statistical indicators and model 

parameters that quantify different features of a particular human geographic phenomenon 

may vary with the spatial scale for which data are available and with the configuration (or 
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shape) of the zones at each scale.  This variation is attributable to the so-called ‘scale’ and 

‘zonation’ effects of the Modifiable Areal Unit Problem (MAUP) that Openshaw (1984) 

documented carefully in his famous CATMOG publication and which has been addressed by 

a number of geographers since then, most recently by Lloyd (2014) and Manley (2014).  Many 

studies of the MAUP effects have considered the impact of scale and zonation problems using 

attribute data in the form of stock variables measured for a limited set of scales and zonation 

systems.  Our context is that of internal migration flows, where two geographies (of origin 

and destination) are involved and where individuals change usual address from one location 

to another during some period of time.  Internal migration data are often released by the 

national statistical agencies as flows between the zones that constitute certain administrative 

or census geographies and in most cases, the geographies of origin and destination are 

equivalent. Migration flows in the 12 month period before the 2011 Census in the United 

Kingdom (UK), for example, are available in the form of symmetric origin-destination matrices 

at certain spatial scales (Duke-Williams et al., 2017) and consequently, the volume and 

intensity of migration between zones will be scale dependent.  Thus, for example, the volume 

of migrants over one year of age between 404 local authority districts in the UK in the 12 

months before the 2011 Census was 2,768,643 and the crude migration intensity was 44.3 

per thousand population, whereas only 1,169,370 or 18.7 per thousand moved between the 

12 UK regions (2011 Census Special Migration Statistics1 extracted from UK Data Service using 

WICID).  

  The aim of this paper is to investigate what are the MAUP implications for migration 

indicators and model parameters when we apply different zone design methods to a set of 

Basic Spatial Units (BSUs) for which we have data on inter-zonal migration flows such as the 

local authority districts mentioned above.  We have chosen four alternative zone aggregation 

methods and our objective is to identify the optimum method, exposing some of the 

advantages and problems of each approach along the way.  The algorithms are explained in 

detail in section 3 of the paper, the data used in the analyses are introduced in section 4, and 

                                                           
1 Census output is Crown copyright and is reproduced with the permission of the Controller of HMSO and the 

Queen's Printer for Scotland Source: 2011 SMS Merged LA/LA [Origin and destination of migrants by age 

(broad grouped) by sex] - MM01CUK_all – Open. 
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the results are reported in section 5.  To begin with, however, we introduce the IMAGE project 

which has been the context in which this research has been undertaken and outline the 

structure and framework of the IMAGE Studio and its subsystems. The paper finishes with 

some conclusions and suggestions for further work. 

 

2.  The MAUP, the IMAGE project and the IMAGE Studio 

2.1     The MAUP 

Whilst the MAUP was first identified by Gehlke and Biehl (1934), it remained relatively 

unexplored by geographers until Openshaw and Taylor (1979) demonstrated how bivariate 

correlation might result in rather different coefficients depending on the number of spatial 

units (the scale) used to define the same area. These authors also identified an ‘aggregation 

problem’ as the second component of the MAUP, arising when the same number of zones 

were involved but their size and shape were allowed to vary.  Subsequently, Openshaw and 

Rao (1995) used the example of Liverpool to demonstrate how the patterns of concentration 

of ethnic minority populations across 119 census wards in 1991 could be almost completely 

reversed by re-engineering the boundaries based on the underlying 2,926 census 

enumeration districts into 119 zones of equal population.  

Further explorations of the MAUP were reported in studies during the 1990s (e.g. 

Fotheringham and Wong, 1991; Holt et al., 1996) and Marble (2000) challenged the research 

community to provide examples of situations in which the MAUP was an important problem. 

Flowerdew (2011), using bivariate correlation between pairs of variables from the 2001 

Census for England, demonstrated that in many cases, the MAUP makes little or no difference 

but that there are some relationships where the effect is significant.  Other studies (e.g. Holt 

et al., 1996; Tranmer and Steele, 2001; Manley 2005) have provided measures that can be 

used to show the effect of the MAUP on variables based on the variances of the variables 

concerned or within-area homogeneity. In the following section, we explain the context in 

which an investigation of the MAUP has been imperative and outline the structure of the 

software system that has been developed to automate the procedures for identifying both 

the scale and zonation components.   
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2.2  IMAGE project 

The IMAGE (Internal Migration Around the Globe) project2 is an international research project 

funded by the Australian Research Council and based at the University of Queensland to 

facilitate cross-national comparisons of internal migration using a robust set of migration 

indicators that measure migration intensity, distance, connectivity and impact (Bell et al., 

2002) that can be used to advance understanding of the way that migration within countries 

varies around the world.  Considerable effort has been spent on constructing a global 

inventory of internal migration data sources (Bell et al., 2015a) and creating a repository of 

migration and related (boundary and population) data sets (Bell et al., 2014) at the University 

of Queensland. The IMAGE project had a number of objectives that derive from analysis of 

the data sets held in the repository, including the comparison of overall migration intensities 

in countries for which data are available or can be estimated (Bell et al., 2015b), the distances 

over which people migrate and the frictional effect of distance on migration (Stillwell et al., 

2016) and the impact of migration on population distributions in different countries (Rees et 

al., 2016).  

 One of the key obstacles confronting cross-national comparison of migration 

indicators is the inequality or inconsistency in the geographical zones for which migration 

data are captured and collected in different countries. Every country has its own hierarchy of 

geographies; in some cases, such as small islands or principalities, there is only one spatial 

unit and no hierarchy; in other cases, data may be available for three or four tiers of 

geography with different numbers of spatial units in each level. However, the boundaries of 

each of these sets of zones define polygons that are unique in shape and size and the 

migration indicators associated with each geography in one country are not directly 

comparable with those relating to administrative or census geographies in other countries. In 

attempting to make comparisons of migration rates between, say, the NUTS 1 regions of the 

European Union (EU) countries, we encounter both components of the MAUP: there are 

different numbers of NUTS 1 regions in each country and the spatial configuration, i.e. the 

size and shape of each region, is different. Exactly the same problem applies when we attempt 

to make cross-national comparisons on a global level.   

                                                           
2 https://www.gpem.uq.edu.au/qcpr-image 
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In response to this challenge, we have proposed a methodology which involves 

progressively aggregating a set of zones for any single country − called Basic Spatial Units 

(BSUs) − into larger and fewer zones − called Aggregated Spatial Regions (ASRs) − and 

generating multiple different configurations of zones at each level of aggregation or scale. 

Sets of migration indicators and model parameters are then computed at different levels for 

different configurations and summarised using measures of central tendency and deviation; 

variation in the summary indicators from one level of ASRs to another can be identified as 

measuring the scale effect whilst variation between the zone configurations at any one level 

can be interpreted as the zonation effect.  The IMAGE Studio has been constructed for 

automating the computation processes involved. 

2.3  The IMAGE Studio 

The IMAGE Studio is the software system that has been developed to facilitate the 

computation of migration indicators and model parameters for different zone systems. The 

framework of the Studio, illustrated in Figure 1, involves four subsystems that are required 

for: (i) the initial preparation of data; (ii) the aggregation of BSU polygons, migration flows 

and population counts; (iii) the calculation of internal migration indicators; and (iv) the 

calibration of a doubly constrained spatial interaction model (SIM). Each subsystem is 

autonomous, supporting standardised input/output data and executing any iterative function 

which is required for the analysis. 
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Source: Stillwell et al. (2014) 

Figure 1. The framework of the IMAGE Studio  

 

The Data Preparation Subsystem is where the various data sets are assembled and 

prepared for use in the other subsystems. The three data sets required are: (i) a matrix of 

migration flow counts with rows representing origin BSUs and columns representing 

destination BSUs and with BSU codes 1, 2, …n in the first column and first row respectively; 

(ii) a vector of populations at risk with the equivalent numeric code for each BSU in the first 

column; and (iii) boundary data for the BSUs in the form of shapefile containing the numeric 

BSU code for each polygon. A matrix of distances between BSUs (with BSU codes in the first 

row and column in same order as migration flows) can also be input if this is available from a 

particular source or has been estimated independently.  

One of the key functions of the Data Preparation Subsystem is to generate a file of 

BSU contiguities from the raw boundary data since this is required for the aggregation 

routines in the Aggregation Subsystem. The contiguity file which is generated provides critical 

information about which BSUs are adjacent to or tangential with other BSUs. The contiguities 

produced automatically by the subsystem can be visualised as lines on a map joining the 



7 
 

polygon centroids.  Figure 2 is a screenshot of the IMAGE Studio user interface showing the 

polygons that constitute parts of the UK in the map window and the red lines connecting 

centroids of adjacent polygons that have been automatically identified by the Data 

Preparation Subsystem. 

 

 

Figure 2. IMAGE Studio interface showing polygons which are defined as contiguous 

automatically by the Data Preparation Subsystem 

 

It is necessary that every BSU polygon is deemed to be contiguous with at least one 

other polygon and that all ‘island’ polygons are joined to the rest of the system.  This latter 

specification is important in countries where polygons are separated by stretches of water 

and no contiguous boundaries are present. In the UK, for example, it is clear from Figure 2 

that Northern Ireland and the Western Isles of Scotland are not ‘connected’ to the rest of 

mainland UK. This process is undertaken manually by adding to the contiguity file the codes 

of polygons that are most suitable for connection based on ferry routes or just proximity. It is 

necessary that contiguities are included for pairs of BSUs in both directions.  A file of BSU 

centroids is also produced since these are the points representing the gravitational centres of 

all BSUs that are used to calculate distances between zones.   

The Aggregation Subsystem is required for the creation of spatial aggregations of BSUs 

into what we call Aggregated Spatial Regions (ASRs). The subsystem provides functionality for 

both single or multiple aggregation. In the case of the former, the user chooses the number 

of ASRs that are to be created from the initial BSUs and the number of required configurations 
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of these ASRs at that one selected scale. If the raw data contained 400 BSUs, the user might 

want to aggregate the BSUs into 200 ASRs, for example, and produce 100 different 

configurations of these ASRs.  Alternatively, with multiple aggregation, the user might specify 

a scale increment or step with which to aggregate BSUs on an iterative basis as well as the 

number of configurations at each scale. For example, if there are 100 BSUs and the user 

aggregates them using a scale step of 10 zones with 100 configurations, then the aggregations 

will take place into sets of 10, 20, 30, 40, 50, 60, 70, 80 and 90 ASRs with 100 configurations 

at each scale. Implementing the aggregation process involves choosing a spatial algorithm 

that is fed with the normalised data from the Data Preparation Subsystem to produce 

centroid coordinates, inter-centroid distances, contiguities, flow matrices and populations for 

each set of ASRs which can then be used in the migration indicators and modelling 

subsystems. This paper reports some results generated when using different zone design 

algorithms that are outlined in more detail in Section 3. 

The Migration Indicators Subsystem is where internal migration indicators are 

calculated for the set of initial BSUs or for each set of ASRs. The subsystem calculates the 

indicators at two levels: indicators at the global or system-wide level refer to measures for all 

BSUs or ASRs; indicators at the local level refer to measures for the individual BSUs. Local 

migration indicators for ASRs are not computed because each set of ASRs will be different 

from one scale to the next and therefore comparison of local indicators between scales will 

be compromised. The global indicators include basic descriptive counts: total population, 

population density, total migration flows and the mean, median, maximum and minimum 

values in the cells of the migration matrix together with various measures of migration 

intensity, effectiveness, connectivity and inequality. The local migration indicators computed 

for each BSU include those used for system-wide analysis and those capturing variation in 

out-migration and in-migration flows and in distance, turnover and churn. Full details of how 

each indicator is defined and calculated are available in the Image Studio manual (Daras, 

2014). 

The fourth subsystem of the IMAGE Studio is the Spatial Interaction Modelling 

Subsystem, where an optimum distance decay parameter measuring the frictional effect of 

distance on migration is generated by calibrating a doubly constrained spatial interaction 
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model (SIM) of the type derived by Wilson (1970) from entropy-maximizing principles and 

expressed as:  

                        Mij = Ai  Oi  Bj  Dj  f(dij)             (1) 

where Mij is the migration flow between zones (BSUs or ASRs) i and j, Oi is the total out-

migration from zone i and Dj is the total in-migration into each destination zone j, Ai and Bj 

are the respective balancing factors that ensure the out-migration and in-migration 

constraints are satisfied, dij is the Euclidian distance between zones i and j, and f(dij) is a 

distance term expressed as a negative power or exponential function to the power β where 

β is referred to as the distance decay parameter. The SIM code (ASPIC) is an updated version 

of an original program written in Fortran IV (Stillwell, 1983) and a user can choose to calibrate 

a single SIM for migration for one spatial system or multiple SIMs for the flows associated 

with the different configurations at various scales produced by the Aggregation Subsystem. 

 

3.   Aggregation methods and indicators 

3.1        Automated aggregation methods  

Two Initial Random Aggregation (IRA) algorithms have been implemented: IRA and IRA-wave. 

The former provides a high degree of randomisation to ensure that the resulting aggregations 

are different during the iterations. Aggregation only takes place between contiguous zones 

and the algorithm is implemented following Openshaw’s FORTRAN subroutine (Openshaw, 

1976). The latter aggregation algorithm is a hybrid version of the former with strong 

influences from the mechanics of the Breadth First Search (BFS) algorithm. If we require N 

aggregated zones, the first step of the IRA-wave algorithm is to select N BSUs randomly from 

the initial set and assign each one to an empty region (ASR). Using an iterative process until 

all the BSUs have been allocated to the N ASRs, the algorithm identifies the BSUs contiguous 

with each ASR, targeting only the BSUs without an assigned ASR and adds them to each ASR 

respectively. The advantages of using the IRA-wave algorithm include its speed in producing 

a large number of initial aggregations and the fact that it produces relatively well-shaped 

regions in comparison to the more irregular shapes derived using the IRA algorithm. 

Since the initial aim of the Aggregation System was to provide the functionality of 

generating sets of alternative aggregations in order to identify the zonation effect, neither of 
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these IRA algorithms involves an objective function. However, later versions of the Studio 

have included the options of running single or multiple aggregations with one of two objective 

functions: maximize equality or similarity. The equality function aims to generate a set of N 

ASRs with the aggregated values of the BSUs in each ASR being equivalent to or as close as 

possible to a targeted value T which is given prior to the aggregation and is measured as the 

sum of the BSU attribute values, 𝑎𝑖 , divided by the number of the ASRs, N: 

                    𝑇 =  ∑ 𝑎𝑖𝑖  𝑁               ⁄       (2) 

where 𝑎𝑖  in this case refers to either the population or the area of BSU i and where there are 

n BSUs.  Thus, the equality function is used for creating ASRs that either have equal 

populations or are of equivalent areal size. Although exact equality rarely occurs because of 

the constraints imposed by aggregating a limited set of BSU populations or areas, these 

options provide the opportunity to investigate the scale and zonation effects on internal 

migration while attempting to control for population or area size. 

The similarity function is based on the calculation of attribute distance between two 

attribute values. In geometric space, the Euclidean distance )( Ed  is the distance between 

two points A and B resulting from the sum of squared differences of their x, y coordinates: 

   22

BABAE yyxxd       (3) 

whereas in non-geometric space, the notion of distance highlights the differences of attribute 

values and can be expressed as:   

     2BAAB aad        (4) 

where, Aa and Ba  are the values of attribute A and B respectively.  

In the IMAGE Studio, the similarity function is structured on the basis of equation (4) 

and is the squared difference between the attribute value of each BSU ( ia ) in ASR z and the 

mean of ASR z . Therefore, in the IMAGE Studio, the distance between the attribute of BSU i

)( ia and the mean value of the attribute for ASR ( z ) is defined as: 

 2ii azd        (5) 

where: 
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and zn is the number of BSUs in ASR z. The objective function (OF) for similarity is then 

calculated as the minimum value of the sum of the attribute distances divided by the number 

of ASRs N, expressed as: 

)min( NdOF
i

iSimilarity        (7) 

The minimisation of the attribute distances between the mean of the ASRs and their 

constituent BSUs produces homogeneous ASRs consisting of BSUs with similar values for the 

selected variable.  The similarity function in the IMAGE Studio can be used for delivering two 

aggregation outputs, one based on minimising the differences in population density between 

ASRs that captures ASR urban/rural characteristics, and the other based on minimising the 

intra-ASR migration flows between the BSUs in each ASR and results in ASRs with 

higher/lower intra-ASR flows respectively.   

One of the most widely used methods for evaluating optimising functions is the 

steepest descent or greedy algorithm (Luenberger, 1973). Given a function F(x), the steepest 

descent optimisation targets the direction in which F(x) is optimised locally. This method 

proceeds along one of two directions: minimising F(x) or maximising F(x). Although 

maximisation of F(x) is feasible, minimisation of F(x) is the most common implementation of 

a steepest descent algorithm. For example, if we want to construct a method of equality in a 

set of units m, then a steepest descent function could be formulated as the minimisation of 

differences between the available subsets N of the given set m. The generic formulation of 

such a function is:  





m

i

iNNxF
2

1)(

                     (8) 

where m is the number of subsets, N, in the set m and Ni is the ith subset of m. 

In a zone design context, the way to proceed from an existing aggregation to a better 

one is by swapping areal units at the borders of the ASRs, while optimising an objective 

function. During these swaps, it is possible for one ASR to lose its contiguity and therefore a 



12 
 

method of holding contiguity intact is essential. For example, Openshaw’s Automated Zoning 

Procedure (AZP) tackled this problem by tracing an adjacency matrix using the Depth First 

Search (DFS) algorithm. One of the most serious difficulties in zone design is the approach 

adopted to maintain ASR contiguities. The method should be as simple as possible avoiding 

complicated structures that may lead to an exponential increase of processing time, during 

the iterative zone design procedure.  

  Additional zone design properties could be identified as equally important, such as the 

initial aggregation algorithm, the starting point for a zone design system. An initial 

aggregation targeting the criteria directly is avoided as the main zone design procedure is 

likely to be trapped into local optima and end the process, thus providing an inadequate 

solution. Hence, Openshaw (1977; 1978) suggested the use of an IRA focusing on the principle 

of contiguous zones as an appropriate first aggregation, which provides a high degree of 

randomisation to ensure that the resulting aggregations differ during each iteration. It has 

been implemented in the IMAGE Studio with object-oriented principles, thus avoiding the 

sustained sequential processes and resulting in much quicker random aggregation (Daras, 

2006). However, the alternative IRA-wave algorithm, a hybrid version of the original IRA 

algorithm and the BFS algorithm, provides a swifter solution and is often preferred when 

further optimisation is not required.  

Although the three characteristics of a zone design system: the objective function, the 

contiguity checking algorithm and the initial aggregation are structurally important, additional 

criteria perform special tasks expanding the capabilities of zone design system such as the 

construction of compact zones in terms of shape formation. Evidently, each criterion applied 

to zone design acts as a constraint on the optimum solution with an additional increase of 

processing time. Therefore, extensive use of criteria should be avoided if the study does not 

require such constraints. 

In the IMAGE Studio, we make use of the Local Spatial Dispersion (LSD) method for 

controlling the shape of the ASRs which is a type of location-allocation problem (Alvanides 

and Openshaw, 1999). This method controls the shape compactness by calculating the 

distance between the centroids of BSUs in each ASR and their output ASR centroid. Generally, 

the LSD algorithm is developed using the geometrical features of BSUs and ASRs. For example, 

for a given aggregation, the LSD measure is calculated by measuring the Euclidian distances 
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between the centroid of each BSU i and the centroid of its ASR z.  Mathematically, it is 

expressed as follows: 

        z

zi

iziz nyyxxLSD 



22    (9) 

where zx and zy are the coordinates of the centroid of ASR z, ix and iy  are the coordinates of 

the centroid of BSU i and zn is the number of BSUs in ASR z. 

During the aggregation process, the BSUs constantly change ASR membership while 

attempting to achieve an optimum solution. Therefore, every time such a change occurs, it is 

necessary to recalculate the ASR centroid. Consequently, in the IMAGE Studio, the LSD 

approach is implemented using only the centroid coordinates of each BSU.  The developed 

LSD approach derives the coordinates of each ASR by calculating the mean of the coordinates 

of the BSU centroids in ASR z: 
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
                 (10) 

The ASR centroid coordinates are then used in equation (9) to provide the final LSD measure 

for the selected ASR. The minimisation of all LSD measures during the aggregation process 

results in the output of spatially compact ASRs. 

3.2        Internal migration indicators 

Bell et al. (2002) suggest a number of system-wide indicators across four domains of internal 

migration − intensity, impact, distance and connectivity – that can be used for comparative 

analysis of migration in different countries, where data are available.  In this paper, we have 

selected five variables that are representative of the first three of these domains in order to 

identify the MAUP components and explore the consequences of using different types of 

aggregation based on data for the UK. The first of these indicators is a measure of the Crude 

Migration Intensity (CMI) and is expressed as a rate of migration by dividing the total number 

of inter-zonal migrants in a time period by the total population as follows: 

             𝐶𝑀𝐼 = 100 ( ∑ 𝑀𝑖𝑗𝑖𝑗 ∑ 𝑃𝑖𝑖⁄ )  (11) 



14 
 

where Mij is the migration flow from zone i to zone j and Pi is the population of zone i. The 

second indicator is a measure of migration impact called the Migration Efficiency or 

Effectiveness Index (MEI), defined by expressing the sum of the absolute the net migration 

balance for each zone in the system as a percentage of the sum of the migration turnover in 

each zone as follows: 

             𝑀𝐸𝐼 = 100 ( ∑ |𝐷𝑖 − 𝑂𝑖|𝑖 ∑ (𝐷𝑖 + 𝑂𝑖)𝑖⁄ )  (12) 

where Di is the total in-migration into zone i and Oi is the total out-migration from zone i. The 

third indicator is the Aggregate Net Migration Rate (ANMR) which is defined as half the sum 

of the absolute net changes across all zones and standardised by the population at risk: 

             𝐴𝑁𝑀𝑅 = 100 (0.5)( ∑ |𝐷𝑖 − 𝑂𝑖|𝑖 ∑ 𝑃𝑖𝑖⁄ )                                                        (13)                

The ANMR therefore measures the overall impact of internal migration on the 

population distribution but can also be defined as the product of the CMI and the MEI as 

follows: 

             𝐴𝑁𝑀𝑅 = 100 (𝐶𝑀𝐼 ∗ 𝑀𝐸𝐼)                (14) 

Thus, a high migration impact might result from high levels of both CMI and MEI or a high 

value of one component offsetting a low value of the other.   

 The fourth and fifth indicators are both related to the distance over which individuals 

migrate.  The fourth is the Mean Migration Distance (MMD) which is computed as: 

     𝑀𝑀𝐷 = ( ∑ 𝑀𝑖𝑗𝑑𝑖𝑗𝑖𝑗 ∑ 𝑀𝑖𝑗𝑖𝑗⁄ )              (15) 

where the  𝑑𝑖𝑗  term is a measure of the Euclidian distance between the centroids of origin 

zone i and destination zone j for the initial set of BSUs and is a composite measure of the 

distances between BSUs within ASRs at different levels of aggregation. The fifth and final 

indicator is the beta (β) parameter calibrated using a spatial interaction model that provides 

a measure of distance deterrence. The calibration method, which uses a Newton Raphson 

search routine to identify the optimum decay parameter, is explained more fully in Stillwell 

(1990). 
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4. Sources of internal migration data and spatial units 

Internal migration data are collected in countries around the world using various different 

collection instruments; in England and Wales, for example, the national statistical agency – 

the Office for National Statistics (ONS) – retains a migration question in its decadal census but 

estimates annual inter-censal migration by comparing the addresses of National Health 

Service (NHS) patient registers from one year to the next, and also draws on the Labour Force 

Survey (LFS) for samples of data on migrants whose behaviour is linked to the labour market.  

In this paper, we use internal migration flows for the UK obtained from the 2011 

Census Special Migration Statistics (SMS) to illustrate results from the Studio. The data format 

is a matrix of the flows between 404 local authority districts (LADs) in the UK for the 12 month 

period prior to the 2011 Census. There are three national statistical agencies in the UK − for 

England and Wales, Scotland and Northern Ireland − each of which undertakes an 

independent but partially harmonized census. One consequence of this division of labour is 

that the ONS has to compile a full set of sub-national migration flows between LADs in the 

UK. This synthesis is only undertaken with census data once a decade.  The statistical offices 

in each country produce reasonably reliable estimates of migration between LADs within their 

respective countries for inter-censal years from administrative sources but migration flows 

between LADs that cross the borders of England & Wales, Scotland and Northern Ireland are 

missing and need to be estimated from data on ‘internal international’ flows within the UK in 

order to generate a full matrix of internal migration in the UK equivalent to that available 

from the census (Lomax et al., 2014).  

Populations at risk are required if the user wishes to compute migration intensities 

and in this instance, usually resident populations of LADs across the UK in 2011 are extracted 

from the 2011 Census using the InFuse interface to Aggregate Data on the UK Data Service 

web site. These end-of-period populations are not the ideal populations at risk for migration 

rates in the previous 12 months but since no start-of-period populations are available, and 

therefore no mid-period populations can easily be derived, the end-of-period populations are 

deemed to be the most suitable.  Finally, the boundaries of these LAD administrative units 

have been sourced from the UK Data Service repository of Boundary Data using the 

EasyDownload facility.  Work has been undertaken to ensure that each of the zones is 

contiguous with at least one other zone. Having explained where the data come from, we 
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turn our attention to reporting the results of running the various aggregation approaches 

available in the Studio with the UK 2011 Census internal migration flow data.  

  

5. Results  

5.1        Choice of aggregation algorithm 

In order to investigate the speed at which the alternative processes produce solutions, we 

have experimented by selecting the LAD administrative units and the UK 2011 Census internal 

migration flow data to aggregate the 404 BSUs in steps of 1, 10, 20 and 50 with 10, 100, 500, 

1,000 aggregation iterations generated from random seeds at each step. Table 1 shows the 

respective greediness running time for the IRA algorithm, the IRA-wave algorithm, the 

aggregation of data for the new ASRs and the calculation of migration indicators. What is clear 

from the table is that both the data aggregation and the calculation of indicators are the 

costliest processes and we should consider these in particular when choosing which algorithm 

to use, when setting the scale step size and when specifying the number of iterations at each 

scale. Also, Table 1 shows that the use of single step aggregations under any number of 

iterations requires extreme run times e.g. about 4 hours overall run time using only 10 

iterations. This set of steps and iterations would provide a limited number of boundary 

configurations for each scale and diminish the extent to which we could explore the sensitivity 

of migration indicators to the different zonations.   

 

Table 1. Time processing costs for 404 LADs using different step size and number of 

iterations    

Step 
size 

Number 
of 

iterations 

IRA 
Time 

(mins) 

IRA-
Wave 
(mins) 

Data 
Aggregation 

(hours) 

Indicator 
calculations 

(hours) 

1 10 0.58 0.45 0.64 2.05 

1 100 5.51 4.19 6.28 20.13 

1 500 25.14 21.83 31.41 100.64 

1 1000 50.28 43.66 62.82 201.27 

10 10 0.06 0.05 0.06 0.21 

10 100 0.58 0.43 0.65 2.05 

10 500 3.04 2.21 3.25 10.26 

10 1000 5.80 4.70 6.80 20.52 

20 10 0.03 0.03 0.03 0.12 
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20 100 0.31 0.24 0.35 1.16 

20 500 1.58 1.17 1.75 5.79 

20 1000 3.17 2.35 3.51 11.58 

50 10 0.02 0.01 0.02 0.05 

50 100 0.17 0.11 0.15 0.50 

50 500 0.84 0.55 0.74 2.55 

50 1000 1.73 1.11 1.48 5.09 

 

5.2         Scale and zonation effects for selected indicators using the IRA wave algorithm 

In this section, the results produced by the IMAGE Studio and presented in Figure 3 are based 

on the computation of CMI, MEI and ANMR values for aggregations into ASRs of the initial 

matrix of flows between 404 LADs in the UK in scale steps of 10 and with 200 alternative 

configurations of ASRs at each scale.  The central line in each graph therefore connects the 

mean value of the respective indicator at different spatial scales as the number of ASRs 

increases from left to right on the horizontal axis. The minimum number of ASRs is 10 and the 

maximum is 400.  This enables us to visualise the scale effect associated with each indicator 

and compare the trajectories of the mean values for each indicator, although the ANMR will 

have a much smaller value than either of its component variables (as indicated on the vertical 

axis in Figure 3c).  A scale effect is most apparent for the CMI, which decreases progressively 

as the number of ASRs is reduced and the individual ASRs get larger, and least evident for the 

MEI, which appears more scale independent, a finding that is in line with results reported for 

several other countries by Bell et al. (2016).  The trajectory of the mean ANMR indicates a 

significant scale effect suggesting that in the UK, in 2011, it is the CMI that is more influential 

on population redistribution that the MEI. Aggregations were performed initially using both 

the IRA and the IRA-wave algorithms but the differences were barely noticeable so the results 

presented here are those based on the much speedier IRA-wave algorithm.  
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a. CMI    b.  MEI    c. ANMR 

Figure 3. Mean values of migration indicators by number of ASRs (scale) 

The shaded areas around the lines of central tendency reflect the variation due to 

alternative configurations or shapes of ASRs as measured by the inter-quartile range (darker 

shading) and the full range (lighter shading). The shaded areas give a useful visualisation of 

the zonation effect of the MAUP, an effect which is most apparent for the MEI indicator and 

least evident for the CMI.  Thus, we observe that whereas the number of zones is important 

in measuring the intensity and the overall impact of migration on the population distribution, 

the shape and configuration of zones is more important when measuring how effective 

migration is as a process of redistribution.   

Figure 4 provides evidence of how the mean migration distance and distance decay 

parameter changes with scale and zonation. Whereas the analysis of migration intensity and 

impact requires a matrix of flows between districts, intra-district flows can be included in the 

SIM runs that generate the distance indicators, where intra-district (BSU) distance is 

measured as the square root of the radius of a circle whose area is equivalent to that of the 

district concerned. The effect of scale on migration distance is pronounced with MMD 

increasing at an increasing rate as ASRs get larger (Figure 4a) but the zonation effect is 

relatively insignificant. The MMD is reduced by around 50 kilometres when the intra-district 

flows are included and this difference is preserved at all scales.   In contrast, whilst the beta 

parameter increases as the spatial units get larger when all migration flows are modelled, the 

frictional effect of distance on migration appears scale independent when only inter-zonal 

migration is included (Figure 4b).  Moreover, the configuration of ASRs appears to have a 
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relatively low effect on the decay parameter until around 50 ASRs, when the range of values 

from alternative zonations gets wider.  The stability of the beta parameter across scales has 

been reported for other countries in Stillwell et al. (2015). 

 

a. Mean migration distance   b. Mean beta parameter 

Figure 4. Mean migration distance and deterrence indicators by number of ASRs 

 

5.3       Scale effects using the IRA algorithm with alternative functions  

The remaining sets of results report on the implications of using the algorithms that generate 

optimal sets of ASRs based on satisfying certain objective functions relating to the 

approximate equality according to area, population, population density and intra-ASR 

migration, and to similarity based on population density or intra-ASR flows. In each case, it is 

possible to show only scale effects because just one optimised set of ASRs is derived at each 

scale. In Figure 5, we have chosen to show the trajectories over scale for the overall migration 

impact indicator, the ANMR, overlaid on the trajectory of the mean ANMR vales and their 

ranges (the shaded area) derived from the IRA wave algorithm and shown in Figure 3.  The 

graph in Figure 5a shows the ANMR values derived at each spatial scale using the different 

objective functions without a shape constraint whereas the graph in Figure 5b shows results 

when a shape constraint is imposed.  It is clear that the trajectories of the optimised ANMR 

under all scenarios reduce in a less uniform and more erratic manner as ASR size increases in 

comparison with the mean ANMR values derived by the IRA wave algorithm.   When no shape 

constraint is applied, the equal area and equal population alternatives generate similar 

optimised ANMR values which tend to be above the other options for much of the scale 
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gradient and outside the range of the values derived using the basic IRA wave algorithm. The 

two alternatives based on similarity, however, show the most erratic behaviour and cross 

most of the scale gradient, fall below the mean ANMR value.  The final two options, based on 

similarity of population density and intra-ASR migration flows, have trajectories that 

approximate the mean ANMR derived using the IRA wave algorithm and lie within the bounds 

of the range around the mean. Comparing the optimised aggregations based on the similarity 

function for both options: shape constraint and no constraint, the ANMR values tend to rely 

on the boundary configuration of the ASRs.  On the contrary, the aggregated ASRs using the 

equality function provide stable ANMR values in regard to the zonation effects.   

    

 

a. ANMR with no shape constraint  b. ANMR with shape constraint applied 

Figure 5. Mean values of ANMR by scale without and with shape constraint 

 The imposition of a shape constraint, as shown in Figure 5b, has the effect of reducing 

the variation in any one option between scales and also of bringing all the alternatives closer 

together and closer to the mean derived from the basic IRA wave aggregation with 200 

iterations at each scale.  Similar sets of results are derived when plotting the optimised MMD 

and beta values for the different options in Figures 6 and 7 respectively. It is the two similarity 

options, involving population density and intra-ASR flows, which generate higher MMD and 

beta values for the middle section of the scale gradient when no shape constraint is applied, 

whereas the equal area and equal population options tend to generate lower MMD and beta 

values. Once again the use of the shape constraint has the effect of reducing the variation 

between the alternatives and giving similar scale effects for both these indicators.  
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a. MDM with no shape constraint  b. MDM with shape constraint applied 

Figure 6. Mean migration distance by scale without and with shape constraint applied 

 

 

a. Beta with no shape constraint         b. Beta with shape constraint applied 

Figure 7.  Beta value by scale without and with shape constraint applied 

 

6. Conclusions 

The redistribution of the population through internal migration has become increasingly 

important as a component of population change in many countries around the world, 

including the UK, yet most research studies are based on data on migration flows between 
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one set of administrative or statistical zones at one particular spatial scale.  The IMAGE Studio 

is innovative software that has been developed to enable the researcher to investigate how 

indicators of migration vary as the number (or size) of zones (scale) change and as the 

boundaries (or shape) of zones change at each scale. The Studio can therefore be used to 

assess the degree to which a basket of indicators is influenced by scale and zonation; in this 

paper we have looked at selected indicators of migration intensity, effectiveness, impact, 

distance and distance deterrence and shown that whilst intensity, impact and distance are 

revealed to vary significantly by scale but less so by zonation, migration effectiveness and 

distance show greater scale independence but more sensitivity to zone shape.  

Whilst these results are based on analysis of multiple zone configurations across a 

range of scales, the paper has also reported the scale effects when zones are optimised at 

different scales using the alternative algorithms available in the Studio that maximise certain 

objective functions subject to the constraints of contiguity. There are subtle differences in the 

scale gradients for particular indicators with the zone shape constraint serving to reduce the 

variations between the results from using different algorithms in all cases. We also observe 

that an optimized indicator at a particular scale may fall outside the range of values computed 

when the IRA wave algorithm is adopted. This finding is expected because we explore a 

fraction of possible configurations using the IRA-wave aggregations (200 iterations per scale) 

under the shape constrains of adjacent regions. Fundamentally, the full exploration of 

possible configurations is a large computational problem and even today an exhaustive 

algorithm is only applicable to small aggregation problems (Keane, M. 1975).  

  Whilst the results of the IMAGE project have reported the use of the Studio for 

comparative analysis of internal migration in different countries around the world (Bell et al., 

2015b; Rees et al., 2006; Stillwell et al., 2016) where zone systems are very different, there is 

potential in using the Studio to explore how scale and zonation effects might vary by 

demographic (age, sex, ethnicity) or socio-economic (occupation, tenure, health status) group 

in any single country (see Stillwell et al., 2017, for an initial study of variations by age group 

in the UK).  A further avenue of investigation might be to explore the relationship between 

migration indicators and explanatory variables at different spatial scales using correlation 

analysis of the type that was employed to investigate the MAUP effects in earlier studies of 

stock variables. Moreover, the aggregation algorithms in Studio might be usefully adapted to 
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provide an automated system for aggregating explanatory variables and generating summary 

measures. 
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