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1. Introduction 
Testing and accounting for cross-sectional dependence when evidence is found in favor of it 
has become a major research area in the econometrics literature. If a set of cross-sectional 
observations at a particular point in time are interdependent, treating them as being 
independent, which is the standard if a linear regression model is estimated by ordinary least 
squares (OLS), may lead to biased or inefficient parameter estimates. For example, if a house 
is put for sale on the market and the owner, or a real estate agent representing the owner, uses 
information of houses with similar characteristics that are for sale or have been sold in the 
past to set the asking price, known as the sales comparison approach, individual housing 
prices will no longer be independent of each other. Similarly, if a potential buyer of a house 
compares quality for money, that is, if he searches for the best possible set of housing 
characteristics within a particular search area given a particular budget, his bid for one house 
will depend on the asking price and characteristics of other houses. Finally, if housing prices 
of all houses go up and down along the business cycle, individual housing prices are not 
independent either, since they are affected by a third factor. 
 The first type of cross-sectional dependence is known as (local) spatial dependence 
and the second type as (global) common factors. Both are also viewed as ‘weak’ and ‘strong’ 
cross-sectional dependence (Chudik and Pesaran, 2015). Two statistics have been developed 
to test for cross-sectional dependence: the cross-sectional dependence (CD) test of Pesaran 
(2004, 2015a) and the exponent α-test test of Bailey et al. (2016b). Unfortunately, these tests 
have been developed for a balanced spatial panel only, i.e. for a cross-section of N units over 
T time periods. For example, the application on housing prices presented in Bailey et al. 
(2016a) as an empirical illustration of both tests employs aggregated data of 363 MSAs over 
the period 1975Q1-2010Q4 (T=144). One exception is Pesaran (2015b, Section 29.8; see also 
Chudik and Pesaran, 2015, section 1.7) who explains how to modify the CD test when having 
an unbalanced panel due to missing observations in the time domain. However, most studies 
trying to explain housing prices are based on data which are also unbalanced in the cross-
sectional domain. Table 1 provides a simple numerical example of the number of housing 
transactions in two units and two time periods to illustrate the problem; the number of 
transaction varies across both space and time. 
 
Table 1: Example of unbalanced panel of housing transaction representative for most studies 
# Transactions Unit 1 Unit 2 Total research area 
Period 1 2 3 5 
Period 2 1 2 3 
Total sample period 3 5 8 
 
In this particular study, we have data on 163,323 housing transactions in the provinces of 
Groningen, Friesland and Drenthe located in the Netherlands over the period 2003-2014, 
subdivided over 948 postcode areas. This dataset has been made available by the NVM 
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(Nederlandse Vereniging van Makelaars en Taxateurs), the largest association of real estate 
agents in the Netherlands. The variables used in this study are the transaction price, the 
transaction price per square meter of living space, the number of weeks the house has been on 
the market, and a variable measuring the physical impact of a series of earthquakes due to gas 
extraction from the soil in the province of Groningen. The latter variable is provided by the 
Geo-services office of the University of Groningen. They assembled a dataset with data 
collected by the KNMI (Koninklijk Nederlands Meteorologisch Instituut), the Dutch 
meteorology institute, containing the date, geographical location, magnitude, and depth of 
each earthquake that occurred in the Netherlands since seismic events started being measured 
in the eighties. Between 1985 and 2015 the Netherlands has been hit by 1100 earthquakes 
according to this dataset. These earthquakes are all relatively small in magnitude on the scale 
of Richter (smaller than 4), but when taken together there is empirical evidence that they have 
affected transaction prices (see Koster and Van Ommeren, 2015 for a study that appeared in 
English). Although further research is beyond the topic of this study, a major issue in all 
studies on this topic so far has been to find out whether global common factors and local 
spatial dependence are relevant extensions to a standard hedonic price model that need to be 
accounted for. Up to now, this problem has not been systematically analyzed. Most studies 
select reference areas not affected by earthquakes (Bosker et al., 2016; CBS, 2017).  

Just as the illustration in Table 1, our data set of individual housing transactions is 
anything but balanced. The majority of houses has been sold only once during the observation 
period, as a result of which it is not possible to treat individual houses as units. Just as Bailey 
et al. (2016a), we can aggregate the data to a smaller sample of N geographical units and T 
time periods based on the location of the houses and the transaction dates, and then calculate 
the statistics based on these N times T observations, but this might lead to a considerable 
aggregation bias. Figure 1 shows the average number of transactions per year in descending 
order for the zip code areas in the sample and so indicates the amount of information that is 
lost when using aggregated data. The aim of this paper is modify the expressions of the two 
test statistics such that they can also be calculated based on an unbalanced panel of individual 
data observations. For this purpose, the paper is set up as follows. Section 2 provides detailed 
mathematical descriptions and background explanations of the original CD and exponent α-
tests. Section 3 presents the modifications that are proposed in this paper. Section 4 presents 
and discusses results, and Section 5 concludes. 

 
<< Insert Figure 1 here >> 
 
2. Cross-sectional dependence tests for balanced data 
 
Suppose a balanced spatial panel of N cross-sectional units over T time periods for a particular 
variable xit (i=1,…,N; t=1,…,T). The Pesaran (2015a, eq.10) CD test is then defined as 
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𝐶𝐶𝐶𝐶 =  �2𝑇𝑇 𝑁𝑁(𝑁𝑁 − 1)⁄ ∑ ∑ 𝜌𝜌�𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁−1
𝑖𝑖=1 ,        (1) 

 
where 𝜌𝜌�𝑖𝑖𝑖𝑖 denotes one of the N times N-1 mutual correlation coefficients between the time-
series of each pair of units i to j, and T is the number of observations on each unit. The 
correlation coefficients are obtained by   
 

𝜌𝜌�𝑖𝑖𝑖𝑖 =
∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)(𝑥𝑥𝑗𝑗𝑗𝑗−𝑥̅𝑥𝑗𝑗)𝑇𝑇
𝑡𝑡=1

�∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)2𝑇𝑇
𝑡𝑡=1 �∑ �𝑥𝑥𝑗𝑗𝑗𝑗−𝑥̅𝑥𝑗𝑗�

2𝑇𝑇
𝑡𝑡=1

, where 𝑥̅𝑥𝑖𝑖 = 1
𝑇𝑇
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑡𝑡=1 .      (2) 

 

The expression �2𝑇𝑇 𝑁𝑁(𝑁𝑁 − 1)⁄  is taken up before the two summation signs in (1) since each 
correlation coefficient has the same weight. There are N(N-1) mutual correlation coefficients, 
which explains the division by N(N-1), calculated over T observations, which explains the 
multiplication by T. The number 2 is added since the correlation matrix is symmetric. 
Consequently, it is sufficient to calculate the CD statistic over the upper triangular elements of 
the correlation matrix only and to multiply the outcome by 2 so as to also represent the impact 
of the lower triangular elements. Importantly, the CD test does not require any (arbitrary) 
specification of a spatial weight matrix describing the spatial arrangement of the cross-
sectional units in the sample, as is standard in the spatial econometrics literature. 
 The null hypothesis of the CD-test is weak cross-sectional or local spatial dependence, 
while the alternative hypothesis reflects strong cross-sectional dependence or the presence of 
common factors. Weak cross-sectional dependence implies that housing prices are related to 
each other but that the strength of this relationship falls with distance and goes to zero if the 
distance separating two units becomes sufficiently large. By contrast, strong cross-sectional 
dependence implies that housing prices remain related to each other also when the distance 
separating two units goes to infinity (Chudik and Pesaran, 2015; Elhorst et al., 2017). The CD 
statistic is a two-sided test statistic whose limiting distribution converges to the standard 
normal distribution N(0,1), as N and T go to infinity. This implies that the critical values of 
this two-sided test are -1.96 and 1.96 at the 5% significance level. If the test statistic takes a 
value outside the interval (-1.96,+1.96), thereby rejecting the existence of weak in favor of 
strong cross-sectional dependence, another question is whether the degree of strong cross-
sectional dependence can be determined. For this purpose, Bailey et al. (2016b) developed the 
exponent α-test.  
 The mathematical form of the α-test consists of three right-hand side components that 
need to be computed  
 

𝛼𝛼 = 1 + 1
2
ln𝜎𝜎𝑥𝑥�

2

ln (𝑁𝑁) −
1
2

𝑐𝑐𝑁𝑁
(𝑁𝑁ln𝑁𝑁)𝜎𝜎𝑥𝑥�

2 − 1
2
ln𝑢𝑢𝑣𝑣

2

ln (𝑁𝑁)        (2) 

 
The first component is the dominating term, the second and third components are bias 
correction terms. These three components are added to the constant 1. Prior to any 
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calculations, the data need to be standardized for each single unit in the sample, to get 
𝑥𝑥𝑖𝑖𝑖𝑖 ≡ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖)/1

𝑁𝑁
∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 . It is to be noted that standardization is not required for the CD 

test since the pairwise correlation coefficients do not change when the data are standardized.  
The term 𝜎𝜎𝑥̅𝑥2 in the first component is defined as 𝜎𝜎𝑥̅𝑥2 = 1

𝑇𝑇
∑ (𝑥̅𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 − 𝑥̅𝑥)2, where 

𝑥̅𝑥 = 1
𝑇𝑇
∑ 𝑥̅𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 . These expressions state that, firstly, the cross-sectional mean (𝑥̅𝑥𝑡𝑡) needs to be 

determined in each time period, secondly, the overall mean 𝑥̅𝑥 over these T cross-sectional 
means and, finally, the standard deviation 𝜎𝜎𝑥̅𝑥2 of this overall mean. Due to the standardization 

of the data 𝜎𝜎𝑥̅𝑥2 < 1, as a result of which ln𝜎𝜎𝑥̅𝑥2 < 0 and 1 + 1
2
ln𝜎𝜎𝑥𝑥�

2

ln (𝑁𝑁) < 1.  

The term cN in the second component is a small sample bias-correction term that is 
obtained successively (i) by running separate regressions of xit on 𝑥̅𝑥𝑡𝑡 with coefficient 𝛿𝛿𝑖𝑖 for 
each unit i in the sample, each based on T observations, (ii) by estimating the standard 
deviation 𝜎𝜎𝑖𝑖2 of each of these regressions, yielding 𝜎𝜎�𝑖𝑖2 = 1

𝑇𝑇
∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝛿𝛿�𝑖𝑖𝑥̅𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 )2, and (iii) by 

computing the average of these estimated standard deviations over all units in the sample, 
𝑐𝑐𝑁𝑁 = 1

𝑁𝑁
∑ 𝜎𝜎�𝑖𝑖

2𝑁𝑁
𝑖𝑖=1  (Bailey et al., 2016b, equation 12). An alternative approach to estimate the 

standard deviation 𝜎𝜎𝑖𝑖2 is based on using a set of principal components (Bailey et al., 2016b, 
equations 30-31). 

 The term 𝑢𝑢𝑣𝑣2 in the third component is also a small sample bias-correction term 
(Bailey et al., 2016b, four-step procedure in section 3.1). It is obtained by running separate 
regressions of xit on a constant and 𝑥̅𝑥𝑡𝑡 with coefficients 𝛾𝛾𝑖𝑖0 and 𝛾𝛾𝑖𝑖1 for each unit i in the 
sample. Next, the average value of xit is computed over all units i in the sample at time t for 
which 𝛾𝛾𝑖𝑖1 is significant, to get 𝑥̅𝑥𝑡𝑡0 (t=1,…,T). Finally, 𝑢𝑢𝑣𝑣2 is determined by 𝑢𝑢𝑣𝑣2 = 1

𝑇𝑇
∑ (𝑇𝑇
𝑡𝑡=1 𝑥̅𝑥𝑡𝑡0 −

1
𝑇𝑇
∑ 𝑥̅𝑥𝑡𝑡0)2𝑇𝑇
𝑡𝑡=1 . To determine whether the 𝛾𝛾𝑖𝑖1 parameter estimates are significant a procedure is 

used developed by Holm (1979). First, their t-values are ordered in descending order and then 

the i-th critical value is determined by 𝑐𝑐𝑖𝑖 = Φ−1(1− 0.05
2𝑁𝑁

) for i=1,...,N, where 0.05 reflects the 

standard significance level of 5% and Φ−1 is the inverse of the standard normal distribution. 
The Holm procedure has the effect that the critical values decrease from approximately 4 to 0.  

The exponent α-test can take values on the interval (0,1]: 𝛼𝛼 ≤ 1
2 points to weak cross-

sectional dependence and corresponds to values of the CD test statistic within the interval 
(-1.96,+1.96); 𝛼𝛼 = 1 points to the strongest form of cross-sectional dependence of no distance 
decay effect at all, while values in between indicate moderate (12 < 𝛼𝛼 ≤ 3

4) to strong (34 < 𝛼𝛼 <
1) cross-sectional dependence. According to Elhorst et al. (2017), following Lee (2002, 2004), 
𝛼𝛼 = 3

4 represents a turning point. Values of α below or above this turning point have 
implications for the method that should be used to estimate the hedonic model explaining 
housing prices, i.e., whether or not the housing prices of competing houses used in the sales 
comparison approach should be treated as endogenous or may be treated as weakly 
exogenous.  

Importantly, evidence in favor of weak cross-sectional dependence (i.e., the null 
hypothesis of weak cross-sectional dependence based on the CD test is not rejected) excludes 
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strong cross-sectional dependence, but not vice versa. If evidence is found in favor of strong 
cross-sectional dependence and is subsequently accounted for, the residuals of xit modified for 
the contribution of strong cross-sectional dependence in the form of global common factors 
might still be due to weak cross-sectional dependence. This can be tested by running the CD 
test and the α-test on these residuals. Halleck Vega and Elhorst (2016) provide an application 
to regional unemployment rates in the Netherlands. They find empirical evidence in favor of 
both local spatial dependence and global common factors, and demonstrate that both should 
be accounted for within one simultaneous framework to get unbiased results. 

Gauss code to calculate the CD and the α-tests are made available in an online 
appendix to Bailey et al.’s (2016) paper. As part of this paper, these routines have been 
reprogrammed in Matlab, which will be made available. 

  
3. Towards a CD-test for unbalanced data 
Time unbalances 
Pesaran (2015b, Section 29.8; see also Chudik and Pesaran, 2015, section 1.7) explains how 
to modify the CD test when having an unbalanced panel due to missing observations in the 
time domain 
 

𝐶𝐶𝐶𝐶 =  �2 [𝑁𝑁(𝑁𝑁 − 1)]⁄ ∑ ∑ �𝑇𝑇𝑖𝑖𝑖𝑖𝜌𝜌�𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁−1
𝑖𝑖=1 .       (3) 

 
The square root of T to the left of the two summation signs in (1) is moved to the right of 
them in (3), since the number of observations on which the correlation coefficients are based 
is different for every pair of units when having an unbalanced panel; let Ti and Tj (𝑇𝑇𝑖𝑖,𝑇𝑇𝑗𝑗 ≤ 𝑇𝑇) 
denote the number of observations available for units i and j, then 𝑇𝑇𝑖𝑖𝑖𝑖 (𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖 ∩ 𝑇𝑇𝑗𝑗) 
represents the number of observations each pair has in common. The calculation of the mutual 
correlation coefficients also needs to be changed. The simplest approach only determines 
these coefficients over the number of observations each pair of units has in common, yielding 
 

𝜌𝜌�𝑖𝑖𝑖𝑖 =
∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)(𝑥𝑥𝑗𝑗𝑗𝑗−𝑥̅𝑥𝑗𝑗)𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖𝑖𝑖

�∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)2𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖𝑖𝑖 �∑ �𝑥𝑥𝑗𝑗𝑗𝑗−𝑥̅𝑥𝑗𝑗�
2

𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖𝑖𝑖

, where 𝑥̅𝑥𝑖𝑖 = 1
𝑇𝑇𝑖𝑖𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖 .     (4) 

  
However, to utilize the data in a more efficient way this expression is better extended to 
 

𝜌𝜌�𝑖𝑖𝑖𝑖 =
1
𝑇𝑇𝑖𝑖𝑖𝑖

∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)(𝑥𝑥𝑗𝑗𝑗𝑗−𝑥̅𝑥𝑗𝑗)𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖𝑖𝑖

� 1
𝑇𝑇𝑖𝑖
∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)2𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖 �

1
𝑇𝑇𝑗𝑗
∑ �𝑥𝑥𝑗𝑗𝑗𝑗−𝑥̅𝑥𝑗𝑗�

2
𝑡𝑡𝑡𝑡𝑇𝑇𝑗𝑗

, where 𝑥̅𝑥𝑖𝑖 = 1
𝑇𝑇𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡∈𝑇𝑇𝑖𝑖 .     (5) 

From this expression it can be seen that all observations for both unit i and unit j are used to 
compute respectively the mean and the standard deviation of xi and xj, while the covariance 
between these two units is based on the observations they have in common. In contrast to 
equation (4), the restriction 𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑗𝑗 = 𝑇𝑇𝑖𝑖𝑖𝑖 will not hold for all i and j in an unbalanced panel, 



7 
 

as a result of which the ratios 1 𝑇𝑇𝑖𝑖𝑖𝑖⁄ , 1 𝑇𝑇𝑖𝑖⁄  and 1 𝑇𝑇𝑗𝑗⁄  do not drop out of equation (5). From 
equation (3) it can further be seen that if one pair of units has more observations in common 
than another pair, the former gets a higher weight in the determination of the CD statistic. 
Although Pesaran (2015b, section 29.8) discusses the option to calculate cross-sectional 
averages over all available observations in order to “utilize data in a more efficient way” 
(p.793) and to switch from equation (1) to equation (3), he does not extend the determination 
of the correlation coefficients in equation (4) to that in equation (5), which represents a further 
step forward. 
 
Cross-sectional unbalances 
To be able to modify the determination of 𝜌𝜌�𝑖𝑖𝑖𝑖 and its weighting scheme within the CD statistic 
when having also different numbers of observation in the cross-sectional domain, we first 
need to change our point of departure of having a balanced spatial panel of N cross-sectional 
units over T time periods for a particular variable xit (i=1,…,N; t=1,…,T). Instead of a single 
observation, we now have a series of Nit observations for each geographical unit i at time t. To 
avoid confusion, we denote this series of observations by the vector zit, while individual 
observations are indexed by h, i.e., zhit reflects an observation of house h in unit i at time t. N 
now represents the total number of geographical units. 

The CD statistics modified for the number of observations in each unit and each time 
period then takes the form 

 

𝐶𝐶𝐶𝐶 = ∑ ∑ ∑ �
2𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗

∑ ∑ 𝑁𝑁𝑘𝑘𝑘𝑘𝑁𝑁𝑙𝑙𝑙𝑙−∑ 𝑁𝑁𝑝𝑝𝑝𝑝2𝑁𝑁
𝑝𝑝=1

𝑁𝑁
𝑙𝑙=1

𝑁𝑁
𝑘𝑘=1

𝜌𝜌�𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁−1
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1  .      (6) 

 
In this modification not only �𝑇𝑇𝑖𝑖𝑖𝑖, but also 1/[N(N-1)] is moved to the right of the summation 
signs. The product term 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗 in the numerator of this ratio, which replaces 𝑇𝑇𝑖𝑖𝑖𝑖, denotes how 
many observations in both unit i and unit j in period t are used to determine the correlation 
coefficient 𝜌𝜌�𝑖𝑖𝑖𝑖. If both values 𝑁𝑁𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑗𝑗𝑗𝑗 are large (small), so will be this product term. If 
either 𝑁𝑁𝑖𝑖𝑖𝑖 or 𝑁𝑁𝑗𝑗𝑗𝑗 is large and the other is small, the product term may still be limited. For 
example, it is better to have 2 observations in both units (product is 4) than to have 3 
observations in one unit and 1 in the other (product is 3). If no observations are available for a 
particular unit in a particular time period, the product term will be zero. This is in line with 
the modification made in equation (3) when no observations are available for a particular unit 
in the time domain. The term ∑ ∑ 𝑁𝑁𝑘𝑘𝑘𝑘𝑁𝑁𝑙𝑙𝑙𝑙 − ∑ 𝑁𝑁𝑝𝑝𝑝𝑝2𝑁𝑁

𝑝𝑝=1
𝑁𝑁
𝑙𝑙=1

𝑁𝑁
𝑘𝑘=1  in the denominator of the above-

mentioned ratio denotes the total sum of these product terms, where the contribution of 
product terms with respect to the own units themselves is subtracted, since its correlation 
coefficient is also excluded from the summation. Finally, since the number of observations in 
two units that are related to each other is different for every time period and 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗 replaces 
𝑇𝑇𝑖𝑖𝑖𝑖, we cannot multiply 𝜌𝜌�𝑖𝑖𝑖𝑖 by a fixed number 𝑇𝑇𝑖𝑖𝑖𝑖 representative for all time periods, as in (3); 
instead we repeat this calculation for every time period. This explains the addition of the third 
summation sign with index t. If the number of observations in a particular time period is 
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greater (smaller) than in another time period, this time period also get a larger weight in (6), 
just as in equation (3). 

The calculation of the mutual correlation coefficients may also be further extended. 
The simplest extension is to approach the correlation coefficients by either equation (3) or (4), 
thereby, replacing zit by 𝑧𝑧𝑖̅𝑖𝑖𝑖 for every i and t, which denotes the average over all individual 
housing prices in a particular unit at a particular time period. This approach is tempting since 
it is not immediately clear whether the correlation coefficient between two unequal series of 
individual housing observations exists and can be determined. This question has been posed 
on internet several times, but an adequate answer has not been provided.2 In addition, this 
principle to work with cross-sectional averages within each unit in each time period (𝑧𝑧𝑖̅𝑖𝑖𝑖) is 
also employed in Bailey et al. (2016a). The downside of this approach is that substantial 
information gets lost about the variation of housing prices around the mean within each cross-
sectional unit at each point in time, as earlier illustrated in Figure 1. Starting with 14.35 
observations within a particular unit at one moment in time, the average in our sample, the 
only information that will then be utilized is the mean and standard deviation of this set of 
observations. Similarly, the number of observations reported in Table 1 would reduce from 8 
to 4 (N=2, T=2). To utilize all available information much more efficiently, the correlation 
coefficients can be extended as follows 

 

𝜌𝜌�𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗

�𝑆𝑆𝑧𝑧𝑖𝑖�𝑆𝑆𝑧𝑧𝑗𝑗
 ,           (7) 

where 

𝑧𝑧𝑖̅𝑖 = 1
∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖

∑ ∑ 𝑧𝑧ℎ𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖
ℎ=1𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖 ,          (7a) 

𝑠𝑠𝑧𝑧𝑖𝑖 = 1
∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖

∑ ∑ (𝑧𝑧ℎ𝑖𝑖𝑖𝑖 −
𝑁𝑁𝑖𝑖𝑖𝑖
ℎ=1𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖 𝑧𝑧𝑖̅𝑖)2,       (7b) 

𝑠𝑠𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗 = 1
∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖𝑖𝑖 𝑁𝑁𝑗𝑗𝑗𝑗

�
𝑧𝑧𝑖𝑖1⨂𝜄𝜄𝑁𝑁𝑗𝑗1 − 𝑧𝑧𝑖̅𝑖⨂𝜄𝜄𝑁𝑁𝑖𝑖1𝑁𝑁𝑗𝑗1

⋮
𝑧𝑧𝑖𝑖1⨂𝜄𝜄𝑁𝑁𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖̅𝑖⨂𝜄𝜄𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗

�

′

�
𝜄𝜄𝑁𝑁𝑖𝑖1⨂𝑧𝑧𝑗𝑗1 − 𝑧𝑧𝑖̅𝑖⨂𝜄𝜄𝑁𝑁𝑖𝑖1𝑁𝑁𝑗𝑗1

⋮
𝜄𝜄𝑁𝑁𝑖𝑖𝑖𝑖⨂𝑧𝑧𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖̅𝑖⨂𝜄𝜄𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑗𝑗𝑗𝑗

�,   (7c) 

 
where the symbol ⨂ represents the Kronecker product between two vectors, and 𝜄𝜄𝑝𝑝 represents 
a vector of ones of length p. The expressions (7a) and (7b) measure the mean and standard 
deviation over all available observations for a particular unit i. Expression (7c) determines the 
covariance between two units i and j over all their observations. Take the example provided in 
Table 1. The first right-hand side term in (7c) based on the numbers provided in this table is 
1/(2*3+2*1)=1/8. In the first period there are 2 observations on unit 1 and 3 observations on 
unit 2. The Kronecker products within the two right-hand side vectors of (7c) establish a 
comparison of all price combinations between these two units, which sum up to a total of six; 
the first housing price in unit 1 is compared first with the three housing prices in unit 2, and 
then the second housing price in unit 1 is compared with the three housing prices in unit 2.3 

                                                 
2 See the results of a search process using google based on the search terms: correlation and unequal. 
3 Note that the order in which the data are provided does not matter when using this setup. 
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Similarly, there will be 2*1 price comparisons in the second time period. Both right-hand side 
vectors are thus of length 8. If there are no data available for a particular unit in a particular 
time period, the corresponding elements in the two right-hand side vectors drop out (which 
has been left aside mathematically to simplify notation). The idea to compare all price 
combinations between two units in a particular time period is the main step forward of the 
proposed modification, since only then each individual observation will be used in the 
calculation. 
 
4. Towards an α-test for unbalanced data 
 
When having an unbalanced panel both in the cross-sectional and the time domain, the term 
𝜎𝜎𝑥̅𝑥2 on the right hand side of the α-test statistic in (2) can readily be replaced by 
 
𝜎𝜎𝑧̅𝑧2 = 1

𝑇𝑇
∑ (𝑧𝑧𝑡̅𝑡𝑇𝑇
𝑡𝑡=1 − 𝑧𝑧̅)2,         (8) 

 
where  
 

𝑧𝑧𝑡̅𝑡 = 1
∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝑧𝑧ℎ𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖
ℎ=1

𝑁𝑁
𝑖𝑖=1 ,          (8a) 

𝑧𝑧̅ = 1
𝑇𝑇
∑ 𝑧𝑧𝑡̅𝑡𝑇𝑇
𝑡𝑡=1 .           (8b) 

 
Similarly, separate regressions can be run of zhit first on 𝑧𝑧𝑡̅𝑡 and then on a constant and 𝑧𝑧𝑡̅𝑡 for 
each unit i. Due to unbalances, the number of observations on which these regressions are 
based are unit-specific, namely ∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑇𝑇

𝑡𝑡=1 , rather than a fixed number of T observations. The 
first of these two regressions is used to determine 
 

𝑐𝑐𝑁𝑁 = 1
𝑁𝑁
∑ ∑ 𝑁𝑁𝑖𝑖𝑖𝑖

𝑇𝑇
𝑡𝑡=1

∑ ∑ 𝑁𝑁𝑗𝑗𝑗𝑗
𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑡𝑡=1

𝜎𝜎�𝑖𝑖
2𝑁𝑁

𝑖𝑖=1          (9) 

where 

 𝜎𝜎�𝑖𝑖2 = 1
∑ 𝑁𝑁𝑖𝑖𝑖𝑖𝑇𝑇
𝑡𝑡=1

∑ ∑ (𝑧𝑧ℎ𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑧𝑧𝑡̅𝑡)2
𝑁𝑁𝑖𝑖𝑖𝑖
ℎ=1

𝑇𝑇
𝑡𝑡=1         (9a) 

  
Note that the estimates of the standard deviations of the regressions are weighted with the 
total number of observations that is available for each unit. The second of these two 
regressions is used to determine which parameters 𝛾𝛾𝑖𝑖1 are significant according to Holm’s 
procedure. Finally, 𝑢𝑢𝑣𝑣2 is computed by  
 
𝑢𝑢𝑣𝑣2 = 1

𝑇𝑇
∑ (𝑇𝑇
𝑡𝑡=1 𝑧𝑧𝑡̅𝑡0 − 1

𝑇𝑇
∑ 𝑧𝑧𝑡̅𝑡0)2𝑇𝑇
𝑡𝑡=1          (10) 

 
where 𝑧𝑧𝑡̅𝑡0 is determined in a similar fashion as in (8a), though only over those observations for 
which 𝛾𝛾𝑖𝑖1 is found to be significant. 
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5. Results 
The numerical results of this study are recorded in Table 1. Column (1) reports the four 
variables and column (2) the statistics that are considered, among which the outcomes of the 
modified CD and α-tests. The statistics in column (3) are based on imbalances in the time 
domain only and reflect the method applied in Bailey et al. (2016a). First, we calculated 𝑧𝑧𝑖̅𝑖𝑖𝑖 
for every i and t for which data are available. Figure 2 shows the imbalances in the time 
domain when following this approach. For 511 of the 948 zip codes the average transaction 
price is available for every time period. For 85 zip codes 1 aggregated observation is missing, 
for 65 zip codes 2 are missing, which goes on to 34 zip codes for which 11 aggregated 
observations are missing. The latter represent zip code areas that hardly contain any houses, 
for example, because it concerns industrial sites, nature areas, or districts that have been into 
taken into housing production only recently. The CD statistic is calculated using (3), the 
correlation coefficients using (5), and the α-test using (2). To verify whether the α-test is 
sensitive to zero averages, which occur if there are no observations available for a particular 
zip code in a particular period, we also calculated this statistics based on the 511 zip codes for 
which no observations are missing at all (see Figure 2). It should be stressed that this causes 
only a small loss of observations relative to the whole sample: 7,922 on a total of 163,323 
housing transactions, or 4.9%. The statistics reported in column (4) are based on imbalances 
in both the time and the cross-sectional domain and represent the method proposed in this 
paper based on the full data set. The CD statistic is calculated using (6), the correlation 
coefficients using the set of equations in (7), and the α-test using the set of equations in (8)-
(10). Finally, column (5) of Table 1 duplicates column (4) when controlling for a common 
factor, to which we come back shortly. 
 
<< Insert Table 1 and Figure 2 here >> 
 
 The results in columns (3) and (4) of Table 1 show that, even though the average 
pairwise correlation coefficients tend to be small (ρ� < 0.10), the CD statistic is highly 
significant, no matter which variable is being considered and no matter whether averaged data 
or the full data set are used. In spite of this, the CD statistic takes higher values when 
employing the full data set. There are two explanations for this. The first is that the average 
pairwise correlation coefficients tend to increase, from 0.048 to 0.053 for the transaction price 
per square meter, from 0.053 to 0.061 for the time on the market, and from 0.53 to 0.061 for 
the earthquake indicator. If the average correlation coefficient increases, so does the CD 
statistic since it determines a weighted average of all individual correlation coefficients. Only 
for the transaction price this correlation coefficient diminishes when switching to the full data 
set. The second explanation is that the number of observations available for each pairwise 
comparison resulting in positive correlations exceeds its counterpart resulting in negative 
correlations. To illustrate this we calculated the percentage of all pairwise correlations 
producing a positive and a negative outcome, i.e., 𝜌̅𝜌+ and 𝜌̅𝜌−, and reported the results in 
column (3). For the transaction price, the transaction price per square meter and the time on 
the market variable, these percentages range from 62.7 to 67.7% for 𝜌̅𝜌+ and from 32.3 to 
37.3% for 𝜌̅𝜌−. Only in case of the earthquake indicator we obtain a different result; the 
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percentage of positive correlations amounts to 12.4%, while the percentage of negative 
correlations is 87.6%. By contrast, the average pairwise correlation coefficient in the first 
group of positive correlations is 0.406, the highest of all cased being considered, while its 
counterpart in the second group of negative correlations with -0.005 is close to zero. It 
indicates that the area in which houses are due to earthquakes is bounded and that the whole 
set of correlations (12𝑁𝑁(𝑁𝑁−1)=448,878) might be used to identify the boundaries of this area, for 
example, by means of cluster analysis. We consider this as an interesting topic for further 
research.  
 The results obtained for the α-test in columns (3) and (4) reconfirm the CD test results. 
When using averaged data, the degree of cross-sectional dependence ranges from 0.770 to 
0.891. When repeating this analysis for a balanced panel of averaged data of 511 zip codes 
over 12 time periods having full data (see Figure 2), these numbers change to comparable 
values of 0.693 to 0.995. When using the full data set the degree of cross-sectional 
dependence take values ranging from 0.751 to 0.988; the outcomes are somewhat lower than 
those found in column (3) for the first two variables, the transaction price and the transaction 
per square meter, comparable for the earthquake indicator, and slightly higher and close to 
one, in line with the CD test statistic, for the time on the market variable. 
 An interesting outcome is that 𝜎𝜎𝑧̅𝑧2 turns out to be smaller than 𝜎𝜎𝑥̅𝑥2, i.e., the dominating 
term in the expression of the α-test statistic in equation (2). It says, not surprisingly, that 𝑧𝑧𝑡̅𝑡 is 
a better estimate of the average housing price (or one of the other three characteristics) when 
taken over all housing transactions in a particular time period than 𝑥̅𝑥𝑡𝑡, which in turn is taken 
over the average prices of all geographical units in a particular time period. By contrast, the 
estimate of the bias correction term 𝑢𝑢𝑣𝑣2 turns out to have a greater upward effect on the 
estimate of α. This is because the number of units that is filtered out due an insignificant 
parameter 𝛾𝛾𝑖𝑖1 is much smaller when using the full data set instead of using average data. 
Apparently, just as 𝑧𝑧𝑡̅𝑡 is a better estimate of the average housing price than 𝑥̅𝑥𝑡𝑡, so is 𝑧𝑧𝑡̅𝑡0 
compared to 𝑥̅𝑥𝑡𝑡0 since it is based on more observations. 

The overall significance of the CD and α-tests outcomes imply that the collected 
characteristics of housing transactions remain related to each other also when the distance 
separating two houses goes to infinity. Controlling for weak cross-sectional or local spatial 
dependence only, the standard approach in numerous empirical studies, will thus produce 
biased results. Controls for strong cross-sectional dependence are needed to begin with. The 
necessity to do so further increases when employing individual rather than aggregated data. 

Column (5) of Table 1 reports the statistics when controlling for a common factor 
measured by 𝑧𝑧𝑡̅𝑡. This calculation utilizes the full data set and accounts for imbalances in both 
the time and the cross-sectional domains. First, we run the regressions  

 
𝑧𝑧𝑖𝑖𝑖𝑖 = 𝛾𝛾0𝑖𝑖 + 𝛾𝛾1𝑖𝑖𝑧𝑧𝑡̅𝑡 + 𝑒𝑒𝑖𝑖𝑖𝑖         (11) 

 
for every unit in the sample, where 𝛾𝛾0𝑖𝑖 and 𝛾𝛾1𝑖𝑖 are unit-specific parameters to be estimated, 
and 𝑒𝑒𝑖𝑖𝑖𝑖 is a vector of the same length as 𝑧𝑧𝑖𝑖𝑖𝑖 with independently and identically distributed 
error terms with zero mean and constant variance 𝜎𝜎𝑒𝑒2. Note that this procedure is exactly the 
same as the one that is used to determine 𝑢𝑢𝑣𝑣2. Next, the raw data are de-factored by 
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𝑒̂𝑒𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝛾𝛾�0𝑖𝑖 − 𝛾𝛾�1𝑖𝑖 𝑧𝑧𝑡̅𝑡         (12) 

 
In this way, aggregate fluctuations are extracted, such that the resulting de-factored variable. 
i.e., residuals, can be analyzed in a second stage for any remaining cross-sectional 
dependence. 
 The results show that the degree of cross-sectional dependence measured by the CD-
test falls substantially when controlling for a common factor, i.e. the average price in the 
research area measured at time t (t=1,…,T) with unit-specific (heterogeneous) coefficients (γ). 
For three of the four variables (the time on the market variable is the exception), we still 
observe some degree of strong cross-sectional dependence, i.e., the CD test statistic still takes 
values outside the interval (-1.96,+1.96). This remaining cross-sectional dependence may be 
tackled by considering more than one single common factor. For example, one could split up 
the research area into different subareas and consider additional local common factors. For 
example, in addition to 𝑧𝑧𝑡̅𝑡, Bailey et al. (2016a) considered local common factors 𝑧𝑧𝑟̅𝑟𝑟𝑟 for eight 
regions r. Another possibility is to make a distinction between urban and rural areas, which 
might be beneficial since the former tend to be characterized by increasing and the latter by 
decreasing population sizes during the sample period.  

Generally, the α-test goes down and falls below 0.75 in column (5) of Table 1 when 
controlling for a common factor, although we need to be careful since it is only possible to 
identify and consistently estimate α for values of greater than or equal to 0.5 (Bailey et al., 
2016b). Outcomes smaller than 0.75 after common factors have been controlled for indicate 
that weak cross-sectional dependence needs to be accounted for in addition to strong cross-
sectional dependence, in this case when explaining housing prices. This finding does not 
come as a surprise since the application of the sales comparison approach is daily practice of 
NVM real estate agents in the Netherlands. A detailed description of this practice has been 
documented by Op’t Veld et al. (2008). The idea to mix up both weak and strong cross-
sectional dependence in one model has been picked up by Bailey et al. (2016a) using 
aggregated data on housing transactions, while Duran and Elhorst (2017) are working on a 
similar study using individual data. 
 
6. Conclusion 
We have modified and programmed the cross-sectional dependence (CD) test and the 
exponent of cross-sectional dependence test such that they can also be applied to unbalanced 
panel in both the time and cross-sectional domain. Due to its general form, the potential 
number of applications is unlimited. We have applied these tests on a microeconomic data set 
of individuals housing transactions over a twelve-year period and have found evidence in 
favor of both weak and strong cross-sectional dependence. Importantly, the real estate 
literature consists of numerous studies not accounting for any type of cross-sectional 
dependence, or only weak or only strong spatial dependence. We have decided not to mention 
any examples here to illustrate this, because it is difficult to be complete and any example 
would not be subjugate to others we could mention equally well. By contrast, studies 
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accounting for both are scarce, we mentioned two in the previous section, thereby, setting the 
research agenda for the next coming years.  
 Several studies control for cross-sectional (such as postcode or neighborhood 
dummies) and time-period fixed effects (Koster and Van Ommeren, 2015), which is one way 
to cover both types of cross-sectional dependence, but as Shi and Lee (2017) have recently 
pointed out, this is not more than a special case of a much wider class of models with spatial 
interactions and interactive fixed effects, which are alternative terms for weak and strong 
cross-sectional dependence.  
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 Table 1. Results of the modified CD-test and α-test 
(1) 

Variable 
(2) 

Statistic 
(3) 

Only time unbalances 
based on averages 𝑥̅𝑥𝑖𝑖𝑖𝑖 if 
available 

(4) 
Time and cross-
sectional imbalances 
based on full data set 

(5) 
Time and cross-sectional imbalances 
applied to full set of residuals by 
controlling for a common factor 

Transaction price CD-test 
𝜌̅𝜌 
𝜌̅𝜌+ (% > 0) 
𝜌̅𝜌− (% < 0) 
α-test 

59.0 
0.032 
 
 
0.875   (0.920*) 

118.4 
0.026 
0.101   (62.7) 
-0.087  (37.3) 
0.790 

3.3 
0.000 
0.072   (45.4) 
-0.055  (54.6) 
0.629 

Transaction price per 
square meter living 
space 

CD-test 
𝜌̅𝜌 
𝜌̅𝜌+ (% > 0) 
𝜌̅𝜌− (% < 0) 
α-test 

91.3 
0.048 
 
 
0.890   (0.952*) 

212.5 
0.053 
0.112   (67.7) 
-0.098  (32.3) 
0.679 

5.5 
0.000 
0.074   (46.3) 
-0.058  (53.7) 
0.663 

Time on market CD-test 
𝜌̅𝜌 
𝜌̅𝜌+ (% > 0) 
𝜌̅𝜌− (% < 0) 
α-test 

106.4 
0.053 
 
 
0.891   (0.955*)   

241.1 
0.061 
0.117   (67.0) 
-0.100  (33.0) 
0.988 

-0.04 
0.000 
0.070   (43.9) 
-0.054  (56.1) 
0.459 

Earthquake indicator CD-test 
𝜌̅𝜌 
𝜌̅𝜌+ (% > 0) 
𝜌̅𝜌− (% < 0) 
α-test 

111.4 
0.056 
 
 
0.770   (0.693*) 

294.6 
0.094 
0.406   (12.4) 
-0.005  (87.6) 
0.751 

14.8 
0.005 
0.223   (7.4) 
-0.016  (92.6) 
0.506 

Source: own calculations, * α-test when eliminating cells (zip code in a particular period) without any observations.
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Figure 1. Average number of transactions per year in descending order for the zip codes in 
                the sample 

 
 

Figure 2. Histogram representing the number of zip codes (vertical axis) and number of time 
                periods (horizontal axis) without any housing transactions 
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