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1 Introduction

Spatial segregation, here understood as the uneven distribution of social groups in space
(Reardon and O’Sullivan, 2004), is a persisting problem in many cities in the world (Tammaru
et al., 2015; Wang et al., 2018). It can occur along one or several social dimensions, such
as income, religion, or migration background. This situation is prejudicial for society, as
segregation can result in exacerbating inequality between groups; in terms of education
achievements, well-being, or health condition, among other aspects of people’s life (Owens,
2018; Ludwig et al., 2012; Williams and Collins, 2001).

The spatial scale at which such segregation unfolds matters: in a city with large segregated
regions, individuals from different groups are distant from each other, and thus less likely to
encounter. This impedes interaction between groups, which is found to further contribute
to inequality (Wilson, 1987; Vervoort, 2012; Tóth et al., 2021). Several studies have proposed
methods to determine the spatial scale of segregation, and the factors influencing it (Reardon
et al., 2008; Petrović et al., 2018; Veneri et al., 2021). For instance, Petrović et al. (2018) do
that by assessing the variation of a scale-dependent segregation indicator. Their indicator
measures the social diversity in each neighborhood’s local environment, defined by a varying
spatial extent around them, called scale. By computing the segregation indicator for a wide
range of scales, and studying its maxima, they identify scales of interest. However, the indicator
is aggregated at the city level, and does not convey the size, nor the number of segregated
regions in the city.

Hitherto, studies have not drawn the size distribution of segregated regions in cities, while it
could help understanding how segregation unfolds. This study proposes a direct approach to
measure the size of segregated regions, by delineating their spatial extent. Using the proposed
approach, we are able to make the following substantive contributions: we determine the size
distribution of segregated regions per city, define the spatial scale of segregation for each city,
and relate it to geographic, demographic, and urban characteristics of cities.

To delineate segregated regions in a city, we first determine the potential to encounter indi-
viduals from the social groups of interest in each spatial unit of the city — here defined as
potential exposure —, and then aggregate these units into regions that are homogeneous
with respect to this indicator. To measure the potential exposure to a group in a spatial unit,
we compute the share of individuals from that group in the population able to walk to the
spatial unit. The data required for this work consists in spatial demographics and street data.
Agglomerative clustering is then used to aggregated the units into homogeneous regions. The
regions in which the potential exposure is significantly larger than the city’s average are labeled
as segregated. Finally, one can compute the size of each segregated area, and define the scale
of segregation from the size distribution of these areas.

In this study, we focus on the spatial segregation of people with a non-western migration
background in the Netherlands. Segregation between the Dutch natives and the incoming
population is now a major issue for local authorities, as it is deemed to hamper integration
and social mobility (Zorlu and Mulder, 2008; Hartog and Zorlu, 2009; Vervoort, 2012; Tselios
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et al., 2015). The spatial scale of segregation is particularly important in this context, as larger
scale tends to be associated with lower integration (Tselios et al., 2015).

2 Data

This section summarizes the data sets used in the analysis. The two data sets used are demo-
graphic data (subsection 2.1), and data on the street layout (subsection 2.2). They are used
to measure the potential exposure in each spatial unit. Demographic data set provides the
share of each group residing in each spatial unit, and the street layout allows to determine the
walking time between units.

2.1 Demographic data

Demographic data provides information on the population mix living in spatial units. It is
retrieved from the Centraal Bureau voor de Statistiek (van Leeuwen, 2020). The spatial units
are the 6-digits postcodes. These units are around 100x100 m2 large, and populated by around
50 inhabitants in cities. Inhabitants are grouped into three categories: individuals from Dutch
descent (both parents were born in the Netherlands), individuals with a western immigration
background (Europe, North America, New Zealand, Australia, Japan), individuals with an non-
western immigration background. In this data, individuals with a migration background are
originating from another country than the Netherlands, or have one of their parents coming
from another country than the Netherlands. Year 2017 is used for the analysis.

For privacy reason, the data is provided for a category in a spatial unit if at least 5 inhabitants
belong to that category in that spatial unit, and if there are at least 10 residents living in the
spatial unit. The data is provided in percentage terms of the total population in the spatial
unit. The percentage is rounded to the closest 10%. We are able to partially correct these
inaccuracies, using other variables in the data set (see appendix A for more details).

2.2 Street data

The street network is obtained from the OpenStreetMap (2021) data set, using the OSMnx
library in Python (Boeing, 2017). This library allows to extract the street network in a given
polygon (being the municipal border in our case). In order to compute the walking times
between spatial units, we attach their centroids to the street network, and measure the walking
distances between them.

3 Method

The objective of this work is to determine the scale of spatial segregation in a set of cities. For
that, we first estimate the potential exposure to the different groups of interest in each spatial
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unit (subsection 3.1), aggregate these units into homogeneous regions (subsection 3.2), and
label these regions as segregated if the average exposure is significantly larger than the city
average (subsection 3.3). Figure 1 below shows the different steps involved in the analysis. The
map on the left depicts the share of the group of interest in the population residing in each
spatial unit (using the raw data). The map in the center represents the exposure levels in each
spatial unit, and the map on the right displays the regions designated as segregated. From this
result, we can easily measure the size of each segregated region, and draw the size distribution
for a given city. This section presents a situation with two social groups, but the method can
easily be applied in a case study with more groups.

Figure 1: Delineation of segregated regions in Leiden. The color indicates the proportion of individuals from the
group of interest among the population either residing in the spatial unit (left map), or able to reach it (center and
right map).

3.1 Potential exposure

We compute the potential exposure in each spatial unit before aggregating them into homo-
geneous regions. The potential exposure to a given group in a spatial unit corresponds to the
potential to encounter an individual from the group when walking in the spatial unit. This way,
we identify regions that are homogeneous in terms of exposure. One could also aggregate units
using the residential mix (left map in figure 1). However, the residential mix may represent
poorly the segregation experienced by individuals: if one spatial unit highly populated by a
group is surrounded by units deserted by that group, the segregation experienced by the in-
habitants is most likely lower than what the residential mix indicates, as they still have decent
opportunities to be exposed to different other. The potential exposure also has a smoother
distribution (center map in figure 1), which is more suited for aggregating units into regions
(Spierenburg et al., 2022).

We use an accessibility metric to quantify the ease with which people from each group can
reach the centroid of the spatial unit. People able to reach the spatial unit are weighted using
the walking time between their residence and the spatial unit: the further away people live,
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the less likely they are to visit the spatial unit (subsection 3.1.1). Then, the potential exposure
to a certain group in the spatial unit corresponds to the proportion of people from that group
in the total number of people able to reach that spatial unit (subsection 3.1.2). This potential
exposure is computed for all spatial units in all cities considered.

3.1.1 Travel impedance

The shortest walking distance from spatial unit to spatial unit is computed using the street
network. The walking time is computed from the walking distance, using a walking speed
of 4.5 km/h. Then, for a given destination spatial unit, we determine the origin spatial units
located at an acceptable walking distance from it. We state that the walking time from a
spatial unit to itself is 1 minute. All travel time shorter than 1 minutes are set to 1 minute. The
inhabitants able to reach a given spatial unit are weighted using the walking time and the
travel impedance function described by equation 1.

w(t ) =


1 if 0 ≤ t [s] < 60
3600

t 2 if 60 ≤ t < 1200

0 if t ≥ 1200

(1)

The travel impedance shown in equation 1 is derived from the work of Schläpfer et al. (2021)
providing a law to model visitation pattern of individuals in space. This law is expressed in
equation 2. ρi (r, f ) is the influx of visitors coming to place i , living at a distance r from i
and visiting i at a frequency f . µi is a constant depending on the place i , it relates to the
attractiveness of i . η is 2 (derived empirically). The number of instances in which someone
living at a distance r visits i at frequency f is ρi (r, f ) · f . Then the number of instances in
which someone living at a distance r visits i is derived in equations 3 and 4. As we cannot
estimate the attractiveness µi of a spatial unit i with the data we have, we assume it to be
constant across all spatial units. We therefore have a simple function to model the number of
visits of inhabitants from a spatial unit to another as a function of the distance separating the
spatial units (equation 4). In the impedance function shown in 1, the distance r is replaced by
the walking time t . We set a cut-off at a 20-minutes travel time to limit the number of shortest
paths between spatial units to compute (we stop exploring a path if the length exceeds 20
minutes). The duration of travel times lasting less than 1 minute is not reliable (highly sensible
to the location of the spatial units centroids), the impedance function is therefore set to be
constant below 1 minute. The constant C is set to 3600 s2, so that w(t = 60s) is 1. This constant
does not affect the potential exposure indicator (see next section).

ρi (r, f ) = µi

(r f )η
(2)

wi (r ) =
∫
ρi (r, f ) f d f = µi

r 2

∫
1

f
d f (3)

wi (r ) = C

r 2 (4)
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3.1.2 Potential exposure indicator

The likelihood that someone from group k living in spatial unit j visit spatial unit i is N j k w(ti j ),
where N j k is the population living in j from group k. The likelihood that people from group k
visit destination i is therefore the sum of likelihood over all origin spatial units (equation 5).
Then the potential exposure to group k in spatial unit i is the share of visits from group k in all
visits to spatial unit i . Constant C does not affect the potential exposure indicator: it is both in
the numerator and the denominator of 6.

ni k =∑
j

w(ti j ) ·N j k (5)

Ei k = ni k /
∑
k ′

ni k ′ (6)

3.2 Detection of spatially segregated regions

After measuring the potential exposure in all spatial units, this work uses cluster analysis to
group spatial units together into homogeneous regions in terms of exposure (subsections 3.2.1
to 3.2.3). Finally, regions in which the average exposure is significantly larger than the city
average are labeled as segregated (subsection 3.3).

3.2.1 Agglomerative clustering

We use agglomerative clustering to group spatial units together into larger regions Theodoridis
and Koutroumbas (2008). The variable of interest is the exposure to individuals with a non-
western migration background. In the initialization phase, all spatial units are considered as
independent clusters. Then, one merges clusters (hereafter called regions) iteratively. Merging
regions that are not adjacent is forbidden (section 3.2.2). For each iteration, one considers the
distance between each pair of regions, and merges the most similar regions together (in terms
of potential exposure). The similarity between regions is determined by the Ward distance,
shown in equation 7, minimizing the within-region variance (Müllner, 2011).

d(i ∪ j ,k) =
√

(ni +nk )d(i ,k)+ (n j +nk )d( j ,k)−nk d(i , j )

ni +n j +nk
(7)

Figure 2 provides a toy example. At first, all spatial units (A, B, C, D and E on the left side
of the figure) are considered as individual regions. The dissimilarity d(i , j ) between a pair
(i , j ) of these initial regions is the difference in their exposure level. The most similar regions
are A and E, but they cannot be merged because they are not adjacent. Instead, A and B are
merged. Then the distance between the newly formed region A ∪B and every other region
k is computed using formula 7, where ni , n j , and nk are the number of initial spatial units
in regions A, B and C respectively. We repeat the procedure until the stopping criteria is met
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(subsection 3.2.3). One can also pursue the agglomeration until all spatial units are in the same
region, allowing to build a dendrogram (see figure 2) summarizing all merging operations
performed and the dissimilarity between all sub regions.

Figure 2: Example of agglomerative clustering applied to a toy city (left). The connectivity matrix (center) indicates
the spatial units that are adjacent. The dendrogram (right) depicts the successive merging operations between
regions.

3.2.2 Connectivity matrix

When aggregating spatial units together, one should ensure that spatial units are adjacent, so
that regions are spatially continuous. For that, we use a connectivity matrix to ban merging
operations that would result in spatially discontinuous regions. The connectivity matrix A
for a city with N initial spatial units is a N ×N matrix, in which component ai j is one if i is
adjacent to j , and zero otherwise (see center of figure 2).

3.2.3 Stopping criteria

The agglomerative process is stopped when the within-region variance exceeds a certain
threshold. One need to find the optimal threshold. If the threshold is too high, the algorithm
aggregates regions that do not have comparable exposure levels. If the threshold is too low,
the algorithm misses aggregating regions that should belong to same larger region. We tune
this parameter empirically by testing a wide range of values, and investigating the consistency
of detected regions.

3.3 Labelling a region as segregated

The average exposure in a region R is computed from equation 8. In this equation, the
contribution of spatial unit i is weighted by the population residing in the spatial unit. We
label a region R as segregated if the average exposure in the region yR is significantly larger
than the average exposure µ in the city, when compared its standard deviation σyR

(see 9). In
this equation, the region R is segregated when S is 1 (overexposure) or -1 (underexposure).
When S is 0, the region is considered as mixed.
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yR =
∑

i∈R ni yi∑
i ′∈R ni ′

= ∑
i∈R

θi yi (8)

S =


−1 if yR−µ

σyR
≤−1

0 if −1 < yR−µ
σyR

< 1

1 if yR−µ
σyR

≥ 1

(9)

If two regions have the same value for S and are adjacent, they are merged.

To label a region as segregated, we need to compute the standard deviation of the average
exposure in the region R, σyR

. The derivation is included in appendix B.

4 Results

The aim of this work is to determine the scale of spatial segregation in all Dutch municipalities,
and to assess how it associates with geographic, demographic, and urban characteristics. The
method developed here is particularly suited to define the scale of segregation, as it draws the
size distribution of segregated regions. The distribution provides different indicators (mean,
median, largest component...) characterizing the scale of segregation. In this section, we first
analyze the shape of the distribution, and determine a representative indicator for the scale
(subsection 4.1). Then, we relate this scale indicator to city characteristics (subsection 4.2).

4.1 Size distribution of segregated regions, and scale of segregation in Dutch cities

With our method, we delineate around 800 segregated regions in all municipalities in the data
set. Figure 3 shows how their size is distributed for the 3 largest cities: Amsterdam, Rotterdam
and The Hague. The size is expressed in number of inhabitants, as the surfaces of regions are
biased by large uninhabited areas (water, forest, parks...).

In most cities, the size of segregated regions spans over 1 to 2 orders of magnitude (figure 3 is
in logarithmic scale). In Amsterdam for instance, the largest segregated region is populated by
almost 190,000 inhabitants, and the smallest one is populated by around 5,000 inhabitants.
The distribution is such that one or two regions are considerably larger than the rest. We use
the median of the distribution as an indicator of the scale, so that half of the individuals living
in a segregated region experience a scale larger or equal to the scale indicator. The median is
preferred over the mean, as the distribution is skewed (few large regions, many small regions).
In reality, for most cities, the median region is actually the largest one. In Amsterdam, the
number of inhabitants living in a segregated region is around 370,000 inhabitants, and the
largest component represents 51% of this number. Some cities like the Hague have only one
large segregated component. Finally, the extent to which a region is segregated does not seem
to correlate with its spatial scale. One could think that larger segregated regions are more
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Figure 3: Rank-size distribution of segregated regions in the 3 largest Dutch municipalities. In each municipality,
segregated regions are ordered by population (in thousands inhabitants) and plotted against the region’s rank.
The scale is logarithmic. The share of individuals with a non-western migration background living in the city is
expressed by the variable P_NW next to the city name. The color of the point represents how much larger the
exposure to individuals with a non-western migration background is compared to the city average (using the
difference).

mixed, but this is not observed in figure 3. In this figure, the color represents how much a
region is overexposed to a certain group compared to the city average. Larger regions do not
seem to be either more or less overexposed than smaller ones. This is also the case for all other
cities considered in the analysis.

4.2 Association of the scale with city characteristics

Now that the scale of spatial segregation is clearly defined for each city, we investigate how
the scale relates to geographic, demographic, economic and urban characteristics of cities.
In the literature, the characteristics usually correlated with segregation level are the city size,
income inequality, fragmentation of space by physical boundaries, urban sprawl, and the scale
and pace at which affordable housing has been developed (Gordon and Monastiriotis, 2006;
Natale et al., 2018; Ananat, 2011; Andersen et al., 2016; Hess et al., 2021). In this work, instead
of relating these characteristics to the segregation level in cities, we relate them to the scale
of segregation. Here, the scale of segregation is associated to the city size (subsection 4.2.1),
economic and demographic variables (subsection 4.2.2), and characteristics of the urban
environment (subsection 4.2.3).

4.2.1 Relation between the scale of segregation and the city size

We observe a striking correlation between the scale of segregation (represented by the number
of inhabitants living in the median segregated region) and the population in the city (see figure
4). The correlation coefficient is 0.92. One could expect some correlation as the indicator
for the scale is constrained by the city population: the scale cannot be larger than the total
population. Such dependence would usually result in correlation, regardless of the segregation
pattern. Then, one can expect two different patterns: the relation between the scale of
segregation and the city population could be either linear, or sub-linear. In the linear situation,
larger cities would tend to have larger segregated regions than medium cities, while in the
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sub-linear situation, they would tend to have more medium-sized segregated regions (given
equal levels of segregation). Figure 4 shows a clear linear relationship between the scale of
segregation and the city size rather than a sub-linear relationship. The scale of segregation
in a city with twice more inhabitants than another is expected to be twice larger than in that
other city.

Figure 4: Relation between the scale of segregation and the city population. The plot on the left shows all
municipalities in the Netherlands, while the one on the right filters out the ones with more than 200,000 inhabitants.

4.2.2 Relation between the scale of segregation and demographic and economic charac-
teristics

In cities, the segregation level is usually associated with demographic and economic charac-
teristics. Segregation is larger in cities when the share of groups is more even (the minorities
shares are close to the majority share), and larger for more affluent and unequal cities (OECD,
2018). In this section, we determine whether these characteristics also correlate with the scale
of segregation. Figure 5 shows the relation between scale and income inequality (represented
by the Gini coefficient on the left plot), and the share of the group of interest in the total
population of the city (right plot). The size of the dot in these plots is proportional to the
city population in the city. In these two figures, the scale is represented in relative terms
(population in the median segregated area divided by the city population).

We observe that cities in which the group of interest represents a larger share of the population
show larger-scale segregation (correlation coefficient of 0.34). This relation seems to be sub-
linear, the shape of the scatter plot is concave. This could be explained by the fact that, on
one hand, segregated regions take more space as more people belong to the group of interest
(increasing the scale); and on the other hand, the group of interest represents a larger share of
the population in segregated regions, (limiting the increase in the scale).

Income inequality does not seem to be related to the scale of segregation, the correlation
coefficient between the scale relative to the city population and the Gini coefficient is 0.03.
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Figure 5: Relation between the scale of segregation and economic and demographic characteristics of cities. The
plot on the left shows the relationship between the scale of segregation and the Gini coefficient. The plot on the
right shows the relationship between the social composition of the city and the scale of segregation. The size of the
dots is proportional to the city population.

4.2.3 Relation between the scale of segregation and urban characteristics

Features of urban development are also deemed to be associated with certain segregation
levels. Studies have shown that cities that are denser, more divided by physical boundaries
(as railways), and that have experienced large-scale affordable housing development in their
history tend to be more segregated (Ananat, 2011; Hess et al., 2021). This subsection relates
indicators on these three urban components to the scale of segregation. Figure 6 displays the
relation observed in the Netherlands.

The density of the city is measured using the population to density allocation, being the share
of the population living in spatial unit that is denser than a certain density threshold (set to
3500 inhabitants per square kilometer in this case). A population to density allocation of 0.5
means that 50% of the individuals live in a spatial unit that is denser than 3500 inhabitants
per square kilometer. We prefer this indicator over the density, as it is not biased by potential
uninhabited areas inside the city (river, canals, forest...), and relates more to the density
experienced by inhabitants. The left plot in figure 6 shows that denser cities experience larger
scale segregation (correlation coefficient of 0.42).

By large-scale affordable housing development we mean the waves of high-rise buildings built
in the 60s-70s in the Netherlands to address an intense demand in affordable housing in cities.
Cities in which such housing estate were developed are deemed to be more segregated (Hess
et al., 2021). To investigate this relation, we propose the housing entropy index (equation 10),
that measures how consistent are spatial units with respect to housing development. Spatial
units in which most houses have been developed in the same time period are considered as
more consistent than units mixing houses developed in different time periods. As an indicator
we use the entropy index often used in segregation studies to determine how uniform/mixed
spatial unit are in terms of demographics (Reardon and O’Sullivan, 2004). In this case, we
investigate how uniform/mixed are spatial units in terms of housing development period. For
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each spatial unit, the demographic data also provides the number of housing built within a
certain time window (before 1945, between 1945 and 1964...). We can then use the entropy
index (equation 10) to determine the extent to which spatial units mix housing development
periods. In this equation, pg i represents the share of housing pg i from period g in the total
number of housing hi in spatial unit i , and pg represents the share of housing built in period
g in the total number of housing in the city. This indicator H is comprised between 0 and 1, 1
being a situation in which spatial units are only composed by housing developed in one period.
We observe a weak positive correlation between this indicator and the scale of segregation
(correlation coefficient of 0.28).

H = 1−
∑

i
∑

g hi pg i log (pg i )∑
g pg log (pg )

(10)

The division of space is measured using the division index proposed by Ananat (2011), see
equation 11. This indicator represents the extent to which space is divided by physical bound-
aries, comprised between 0 and 1 (the larger, the more divided). In this indicator, a is the index
of the fragments of the city divided by physical boundaries, and Sa is the surface of fragment
a. Many types of physical boundaries could be considered (railways, highways, canals...), in
this work, we choose to consider only railways. On figure 6, we do not identify a clear relation
between the division of space and the scale of spatial segregation, and the correlation is weak
(correlation coefficient of -0.23).

D I = 1−∑
a

S2
a

S2
tot

(11)

Figure 6: Relation between the scale of segregation and indicators characterizing urban development in cities. The
size of dots is proportional to the city population.

5 Conclusion and outlook

This study proposes a novel data-driven approach to delineate the geographical demarcation
of segregated regions. This approach allows to measure directly the spatial scale of segregation
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from the size distribution of segregated regions, while previous studies would investigate the
scale indirectly, by assessing how a segregation index varies with a scale parameter. We have
then investigated how the scale relates to city characteristics. We observe a striking correlation
of the scale of segregation with the city size, and moderate correlation with income inequality,
share of the group of interest in the city, and population density.

Further research will be devoted to determine these relations at the segregated region level,
instead of the city level. The analysis will be replicated at different timestamp, allowing to
study the evolution of segregated regions in time, and for other countries, to assess how the
scale of segregation relates to the migration history and the housing market in countries.
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A Preprocessing of demographic data

The values per zone in the data is rounded, and this decreases the accuracy of the results.
For the population, if a zone is composed of 8 inhabitants, the rounded value will be 10,
representing a 25% error. For the proportion of individuals with a migration background, if
individuals with a non-western migration background represent 5% of the population in the
zone, it will be rounded to 10%, which corresponds to a 100% error. This section describes the
method used to make an estimate of the demographics that is closer than the rounded values
provided.

A.1 Estimation of the population from the age groups and gender

The population living in a zone can be estimated using the population per gender, per age
group, and the number of households. For instance, if the dataset indicates a population of 15
individuals, 10 women and 10 men, the actual population is either 16 (8 women and 8 men) or
17 (9 women, 8 men). The population cannot be larger than 17 (otherwise rounded to 20), or
smaller than 17 (otherwise the population per gender is incorrect). The same holds for the
5 age groups. The paragraph below describes the method used using the age groups as an
example.

One must differentiate three cases:

• The population in an age group is strictly lower than 5. In this case, the data will
not provide any value (None). Therefore, if the data is None for an age group, the
population in this age group is 0, 1, 2, 3 or 4. In this case, the None value is replaced by 2,
corresponding to the median.

• The population in an age group is comprised between 5 and 7. In this case, the popula-
tion is rounded to the closest 5. The Therefore, if the data is 5, the population is either 5,
6 or 7 (if smaller than 5, it falls in the previous category).

• The population in an age group is strictly larger than 7. In this case, the population is
rounded to the closest 5. In such case, the population can be the rounded population,
the rounded population minus 2, minus 1, plus 1, or plus 2.

The value for the rounded population Ãi of an age group i in the data is either None, 5, or a
multiple of 5 (see table 1). The true population Ai of that age group is a random variable that
can take the values specified in table 1. The difference Di between Ai and the rounded value Ãi

is also a random variable. The total population N is equal to the sum A of the random variables
Ai . The difference D between the actual total population N and the sum of all rounded age
groups

∑
i Ãi is the sum of all Di . Therefore, the probability that the actual population in a

zone is Ñ +d given the population in all age groups is P (D = d | Ã). This probability is the
number of combinations (D1,D2,D3,D4,D5) summing to d among all possible combinations
of (D1,D2,D3,D4,D5). This is done using the concept of generating functions (Wilf, 2005). The
generating function for variable Di is provided in the last column of table 1.
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Ãi Possible values for Ai Ref. value Possible values for Di Generative function
None (0,1,2,3,4) 2 (-2,-1,0,1,2) x−2 +x−1 +x0 +x1 +x2

5 (5,6,7) 5 (0,1,2) x0 +x1 +x2

>5 (Ãi -2,Ãi -1,Ãi ,Ãi +1,Ãi +2) Ãi (-2,-1,0,1,2) x−2 +x−1 +x0 +x1 +x2

Table 1: Generative function corresponding to the random variable Di .

D = D1 +D2 +D3 +D4 +D5 (12)

gN ̸=5(x) = (x−2 +x−1 +x0 +x1 +x2) (13)

gN=5(x) = (x0 +x1 +x2) (14)

g (x) = gλ
N ̸=5(x) · g (5−λ)

N=5 (x) (15)

g (x) = x−2λ(x0 +x1 +x2 +x3 +x4)(x0 +x1 +x2)5−λ (16)

The following derivations determine the coefficient of xd in the generative function of D .

g (x) = x−2λ
(

1−x5

1−x

)λ (
1−x3

1−x

)5−λ
(17)

g (x) = x−2λ(1−x5)λ(1−x3)5−λ(1−x)−5 (18)

Equation 18 can be written as a power series using equation 24. The negative binomial
coefficient in equation 19 is computed using equation 25.

g (x) = x−2λ
λ∑

k=0

(
λ

k

)
(−1)k x5k

5−λ∑
i=0

(
5−λ

i

)
(−1)i x3i

∞∑
j=0

(
−5

j

)
(−1) j x j (19)

g (x) = x−2λ
λ∑

k=0

(
λ

k

)
(−1)k x5k

5−λ∑
i=0

(
5−λ

i

)
(−1)i x3i

∞∑
j=0

(
j +4

4

)
x j (20)

The exponent d of a term xd in the generative function of d in equation 20 can be expressed
as a function of λ, k, i and j (equation 21). Hence, j in equation 20 can be replaced by j in
equation 22.

d =−2λ+5k +3i + j (21)

j = d +2λ−5k −3i (22)

Then, the coefficient of xd in equation 20 (noted [xd ]g (x)) is given by equation 23 below,
corresponding to the number of combination of (D1,D2,D3,D4,D5) for which the Di sum up
to d .
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[xd ]g (x) =
λ∑

k=0
(−1)k

(
λ

k

)
5−λ∑
i=0

(−1)i

(
5−λ

i

)(
d +2λ−5k −3i +4

4

)
(23)

(x + y)n =
∞∑

k=0

(
n

k

)
xk yn−k =

n∑
k=0

(
n

k

)
xk yn−k (24)(

−5

j

)
= (−1) j

(
5+ j −1

j

)
= (−1) j

(
j +4

4

)
(25)

(
n

k

)
=

(
n

n −k

)
(26)

The probability that the sum of all Di is d is computed in equation 27 below.

P (D = d | Ã) = [xd ]g (x)

5λ ·3(5−λ)
(27)

The raw data also provides the rounded total population in the zone Ñ , constraining the
possible values of N (equation 28), and d (equation 29).

Ñ −2 ≤ N ≤ Ñ +2 (28)

Ñ −∑
i

Ãi −2 ≤ d ≤ Ñ −∑
i

Ãi +2 (29)

Finally, the probability that the actual population N is n given Ñ and all Ãi is given in equations
30 and 31.

P (N = n | Ñ , Ã) = P (D = d | Ñ , Ã) (30)

= P (D = d | Ã)∑
d ′ P (D = d ′ | Ã)

, such that Ñ −∑
i

Ãi −2 ≤ d ′ ≤ Ñ −∑
i

Ãi +2 (31)

The same approach is used to estimate the population using the gender categories Gi , and the
number of households using the categories of households.

A.2 Estimation of the population from the data on households

One can also use the number of households and the average number of people per household
to estimate the population in the zone. If the number of households is 10 in the data (the
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true value is comprised between 8 and 12), and there are 2.1 individuals per households on
average, one can evaluate the combination (n,h), with h the number of households, that would
result in the correct number of individuals per household ηh . One should remember that the
number of households H̃ in the raw data is rounded to the closest 5 and ηh is rounded to the
first decimal. We first explore the set S of possible combinations (n,h), given the following
conditions:

n ∈ {Ñ −2, Ñ −1, Ñ , Ñ +1, Ñ +2} (32)

h ∈ {H̃ −2, H̃ −1, H̃ , H̃ +1, H̃ +2} (33)[n

h

]
rounded to 0.1

= ηh (34)

The probability that the actual population N is n given H̃ is computed by counting the
combination (n,h) among all combinations (N ,h) in S. The combinations are weighted
using the probability P (H = h | H̃ ,C̃ ) that the actual number of household is h given H̃
and the number of household C̃i per category i . This probability is computed using the
method described in subsection ??, where the 5 age groups are replaced by the 4 categories of
households.

P (N = n | H̃ ,ηh ,C̃ ) =
∑

h δ(n,h)P (H = h | H̃ ,C̃ )∑
n′

∑
h′ δ(n′,h′)P (H = h′ | H̃ ,C̃ )

δ(n,h) =
{

1 if (n,h) ∈ S

0 if (n,h) ∉ S
(35)

A.3 Estimation of the population

The estimation of the population in a zone is determined by combining the estimation of the
population using the age groups P (N = Ñ +d |Ã), the gender categories P (N = Ñ +d |G̃), and
the data on households P (N = Ñ +d |H̃) (equation 36).

P (N = Ñ +d) = P (N = Ñ +d |Ã) ·P (N = Ñ +d |G̃) ·P (N = Ñ +d |H̃)∑
d ′ P (N = Ñ +d ′|Ã) ·P (N = Ñ +d ′|G̃) · (N = Ñ +d ′|H̃)

(36)

The population estimate N̂ is defined from the expectation of N , rounded to the closest
integer.

B Computing the variance of the average exposure in a region

The variance of the average exposure in a region yR can be computed analytically from the
equations below.
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yR = ∑
i∈R

θi yi (37)

V ar (yR ) = ∑
i∈R

∑
j∈R

Cov(θi yi ,θ j y j ) (38)

= ∑
i∈R

∑
j∈R

θiθ j Cov(yi , y j ) (39)

The coefficients θi are computed from equation 40.

θi = ni∑
i ′∈R ni ′

(40)

The covariance matrix Σ containing the covariances Cov(yi , y j ) can be derived analytically,
from the definition of yi (see equation 41). In this equation, w(ti k ) is the travel impedance
when walking from k to zones i , and xk is the share of individual from the group of interest
residing in zone k. The derivation of the covariance coefficients can be found in equations 43
to 45.

yi =
∑

k w(ti k ) ·nk · xk∑
k ′ w(ti k ′) ·ni

(41)

yi =
∑
k

ci k xk (42)

Cov(yi , y j ) =Cov

((∑
k

ci k xk

)
,

(∑
k ′

c j k ′xk ′

))
(43)

=∑
k

∑
k ′

ci k · c j k ′ ·Cov(xk , xk ′) (44)

=∑
k

ci k · c j k ·V ar (xk ) (45)

In equation 44, the covariance of the two variables xk and xk ′ is given in equation 46. To assess
the significance of the average yR in relation toµ in equation 9, we compare to a case where the
variables xk are randomly allocated to the zone k (the population nk and the travel impedance
w(ti k ) remain the same). This allows to assess the extend to which the average yR can be
observed by luck. The variables xk are randomly allocated, they are therefore independent.
The covariance Cov(xk , xk ′) is 0 when k ̸= k ′. The variance V ar (xk ) is obtained from the actual
distribution of x (the share of individuals from the group of interest residing in a zone).

Cov(xk , xk ′) =
{

0 if k ̸= k ′ (Uncorrelated variables)

V ar (k) if k = k ′ (46)

The value of coefficient ci k is expressed in equation 47.
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ci k = w(ti k ) ·nk∑
k ′ w(ti k ′) ·nk ′

(47)

This computation can be summarized by the matrix multiplication shown in equation 48,
where C is given in equation 49.

Σ=C T ×C ·σ2
x (48)

C =


c11 c12 . . . c1N

c21
...

cN 1 cN N

 (49)
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