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Abstract 

IPUMS Terra is a cyberinfrastructure project that integrates, preserves, and disseminates massive 

data collections describing characteristics of the human population and environment over the last 

six decades. IPUMS Terra has made a number of advances in the spatial demography of big data 

by making information interoperable between formats and across scientific communities. In this 

paper, we describe some of the challenges in dealing with these data, or ‘deserts in the deluge’ of 

big data, that are common to data and information sciences more broadly, and explore 

computational solutions specific to microdata, raster, and area data models. We examine in 

particular data and issues that are germane to spatial demography. 

Introduction 

Over the past half century, interregional differences in population growth rates, unprecedented 

urbanization, and international migration have led to profound shifts in the spatial distribution of 

global population. Economic changes have been dramatic as well, with global per-capita gross 

domestic product roughly doubling, while economic disparities grew in many countries (Rosa et 

al. 2010; Bloom 2011). These extraordinary demographic and economic changes have had 

positive impacts for many but also many troubling consequences, including environmental 

degradation, resource depletion, and climate change (Ehrlich, Kareiva, and Daily 2012). Changes 

in population size, characteristics, and behavior lie at the heart of these environmental 

challenges. The key drivers of change—especially fossil fuel emissions and deforestation—stem 

from population growth and economic development. At the same time, environmental change 

has profound implications for human behavior in that changes such as flooding, erosion of 

coastal areas, and drought are already profoundly affecting human societies and economies, and 

those effects will grow sharply in coming decades. 

Demographic and economic data closely integrated with data on the environment are essential to 

describe the unfolding transformation of human and ecological systems. Data on the human 

population are crucial for understanding changes in the Earth’s biological and climate processes; 

equally important, data on climate and the physical landscape are essential for understanding the 

impact of environmental change on human behavior and well-being (Millett and Estrin 2012). 

There is particular interest in big data on human environment systems. Big data in general refers 

to research centered on datasets that are much larger than those typically used in most fields. The 

size of these data in turn entail new forms of processing and analysis. There is a particular need 

for spatial big data in support of demography, seeing as most pressing environmental challenges 

are at their core population-environment ones. 



However, there are deserts in the deluge of data. A recent special issue of Science argues that we 

need new solutions for dealing with the deluge of huge and complex human and environmental 

datasets in the face of critical shortcomings in our abilities for data manipulation, archiving, and 

discovery (2011). Social science data such as censuses and surveys are complex and unwieldy in 

terms of attributes (e.g., different questions and measures between survey instruments), space 

(e.g., census geographies that vary in space and scale), and time (e.g., changing measurement 

periods and frequencies). Raster-format environmental data pose different data integration 

challenges, including variation in projections and resolutions in addition to their massive sizes. 

IPUMS Terra directly addresses these big-data challenges through data integration, machine-

processable metadata, and sophisticated data discovery and access tools. Along the way, it 

addresses gaps in our ability to store, manipulate, and analyze spatial big data (after Wang and 

Liu 2009). The infrastructure dramatically cuts the costs of research by reducing redundant 

effort, encourages interdisciplinary research spanning the social and natural science divide, and 

enables access for a broad public audience. At broader conceptual levels, IPUMS Terra is 

helping address unresolved challenges in representing social and biophysical entities and 

relationships that operate at multiple levels of organization, over space, and through time. 

IPUMS Terra addresses these deserts in deluge of big spatial data and puts important tools into 

the hands of spatial demographers. 

Deserts in the Deluge 

Our understanding of the interactions between population and environment has been hampered 

by the paucity of data in some cases and the existence of data silos in others. Big data as a 

research area for human-environment dynamics is of great interest to many scientific 

communities, but there are deserts in the data deluge. Gaps in human-environment big data 

include: 

• Data. For all the excitement about big data, scholars wanting to untangle human-

environment interactions face a dearth of spatially-detailed multidecadal data. While 

some relevant data are available, such as climate observations or online opinions about 

global warming, there is surprisingly little detailed information about many social and 

natural features for most of the globe before the year 2000 (Manson and Kernik 2017).  

• Methods. There are shortfalls in our ability to store, manipulate, and analyze the big data 

of human-environment systems. Most big data research is done on fairly simple data, in 

the sense they involve straightforward measures or a single research domain. In contrast, 

we face many unresolved challenges in representing social and biophysical entities and 

relationships that operate at multiple levels of organization, over space, and through time 

(Shook 2015). 

• Theory. A growing number of big data proponents argue that the data deluge augers the 

‘end of theory’ because this approach offers a powerful black-box approach that creates 

knowledge without needing domain experts or engagement with existing research, 

method, or theory. This proposition is profoundly at odds with the core conceptual 

precepts of many disciplines that seek to advance understanding of human-environment 

systems of interest to many spatial demographers (O'Sullivan and Manson 2015). 



In terms of dealing with data needs, IPUMS-Terra is on track to be the largest curated source for 

global human-environment data. In addition to drawing in a range of environmental data, it 

draws on the larger IPUMS project, which is the largest population database in the world, with 

records on over half a billion individuals described by 270 billion data points. We identify, 

acquire, and develop various data sources ranging from historic handwritten census forms to 

current satellite observations of the earth. We research new ways to standardize these data and 

make them comparable across space and through time. We then preserve these data and make 

them internet-accessible so they are readily used by thousands of scholars and many other 

students, policy makers, and members of the public. We work with over a hundred national 

statistical agencies and other organizations around the world on the science of large, complex 

spatiotemporal datasets. 

In terms of methodological demands, a major challenges lies in the fact that data describing 

characteristics of people and places are ordinarily maintained and analyzed in one of three major 

classes of data: microdata, area data, or raster data (Table 1). Each of these data classes has its 

own specialized analytic techniques and data manipulation tools, and very few investigators are 

fluent with the software and methods needed to use all three. Use of each data class tends to vary 

by discipline. Economists and sociologists most frequently describe behavior at the individual 

level, using microdata. Geographers are more likely to describe human behavior using area-level 

data, often using geographic units defined by statistical agencies, such as census tracts. 

Environmental scientists frequently analyze data in raster format, especially data derived from 

remote sensing or environmental modeling, and use area-level data to describe environmental 

features such as watersheds or floodplains.  

Table 1. Spatiotemporal data classes and attendant representations 

 

Spatiotemporal data classes Spatial representations 

Microdata: Each record represents an individual 

person, household, or firm 

Each record includes a code identifying a 

geographic polygon (e.g., state, zip code) 

or a point (street address, longitude-

latitude) 

Area-level data: Each record contains 

information about a place. Data may include 

census tabulations, environmental categories, or 

laws and policies 

Each record includes a code identifying a 

geographic polygon or point (e.g., state, 

zip code, environmental zone) 

Raster data: Grid of pixels organized in rows and 

columns, where each pixel provides a value for a 

categorized or continuous variable (e.g., land 

cover category or mean precipitation) 

Each grid cell corresponds to a 

rectangular area on the ground 

 

Data integration transforms heterogeneous data from multiple sources into a unified schema. 

Most data integration focuses on a particular class of data. For example, a microdata integration 

project can harmonize the classifications, layout, metadata, and format of multiple microdata 



sets; a raster data integration project can reconcile projections, resolutions, format, and 

classifications of multiple raster datasets. Spatial demographers and other scholars interested in 

population-environment dynamics face two challenges, making heterogeneous data interoperable 

within each of the three major classes of spatiotemporal data, as well as making data easily 

interoperable across the major classes of data. Because each class of data is mainly used by 

particular scientific domains, breaking down these data silos also breaks down barriers to 

interdisciplinary research. 

A primary challenge in data integration is the fact that basic data transformations—such as 

transforming raster data to area (technically, usually topological vector) data—are highly 

computationally intensive. Parallel computation, the usual solution for such problems, is 

fundamentally difficult for big spatiotemporal data (Eldawy 2015). Many computational 

problems are “embarrassingly parallel” because they can be solved by partitioning and 

distributing data among nodes in a computing cluster, solving the problem for a subset of data on 

each node, and then collating the results. However, such approaches are rarely workable for 

spatiotemporal data, due to the difficulty of preserving spatial and temporal relationships across 

nodes (Ding and Densham 1996). Microdata require a distribution algorithm that preserves 

relationships between individuals and their households. Raster data and area-level data embody 

complex spatial and topological relationships that are essential for answering most spatial 

problems, relationships that must be preserved when partitioning these data across nodes. 

Parallel computing for spatial big data is an area of active research, but most existing computing 

platforms cannot handle multiple spatial data models or perform spatial data handling and 

analytics commonly found in even the most basic geographic information systems (Ray et al. 

2015). In particular, most existing approaches to parallelization are limited in the data they can 

handle or provide extensions to existing specialized frameworks that are not well-suited to 

spatial data (such as MapReduce and column-store databases). While this research on extending 

existing parallelization approaches to new domains, including the spatial, is very exciting, 

existing systems are neither robust nor wide-ranging enough for a production environment like 

IPUMS Terra (Haynes et al. 2015).  

Microdata. Microdata are typically stored as hierarchical fixed-width text or binary files in 

which each line represents an individual person or set of household characteristics. Challenges to 

high-speed processing of these individual-level data stem from the size and complexity of the 

data and having to conduct complicated queries across multiple samples with thousands of 

attributes and multiple relationships. We implemented Apache Spark’s Parquet columnar storage 

database and found significant performance gains across these queries over standard Java-based 

approaches. Query execution speed has improved by a factor of 10 to 300 for most common 

operations (per Armbrust et al. 2015).  

Area-level data. Large area-level datasets are difficult to move into a parallel computing 

framework because spatial relationships such as adjacency and connectivity must be preserved 

across the nodes among which problems are decomposed (Ray et al. 2013; Puri and Prasad 

2013). We use an industry-standard open-source spatial computing framework, 

PostgreSQL/PostGIS, because it offers deep data handling and analytical capabilities. However, 

PostgreSQL does not natively support parallel queries, although multiple projects are trying to 

scale PostgreSQL onto machine clusters (e.g., CitusDB, GridSQL, Postgres-XC, Postgres-XL, 



and Stado). We extensively tested the offerings of these projects and determined that they do not 

yet adequately support parallel spatial processing well. In the meantime, we developed a 

prototype vector analytic engine that divides PostgreSQL databases across computing nodes. 

This approach derives from research that demonstrates that parallel relational databases like 

PostgreSQL can perform significantly better than MapReduce systems (Pavlo et al. 2009). Our 

efforts have significantly improved performance in analyzing vector datasets, offering near linear 

speedup (when adding computing nodes) for simple topographical operations such as 

determining whether a polygon intersects a line or other polygon (Haynes et al. 2015; Ray et al. 

2014). This research, in addition to helping IPUMS Terra users, also advances fundamental 

research in spatial high performance computing (Vo, Aji, and Wang 2014). 

Raster data. Big-data raster datasets are difficult to make parallel in a computing environment 

because of the need to preserve spatial adjacency among grid cells and the complex kinds of 

computational operations needed to manipulate data. Joining PostgreSQL and PostGIS offers 

IPUMS Terra access to a comprehensive set of raster analysis tools but this combination does not 

handle large rasters well because row limit sizes (where rows are the primary data format in 

relational databases) are often exceeded by raster datasets (Stonebraker et al. 2011; Shook 2015). 

We have experimented with the use of array data structures in PostgreSQL, finding a three-times 

speed up in performance for many operations. We are also developing web applications to offer 

easy and fast access to these data via textual and web mapping interfaces, reducing the need for 

data users to know much about the exact characteristics of the data they seek (Manson et al. 

2012). 

A key conceptual challenge of big data is the need to allow domain scientists to develop theory 

outside of purely-inductive black box frameworks. To address this challenge, IPUMS Terra 

infrastructure offers tools that perform transformations between microdata, area data, and raster 

data in a way that allows domain experts to focus on answering conceptual questions in their 

fields without having to spend valuable time and resources on managing and manipulating data. 

Many of the transformations are conducted within a PostGIS database that houses much of the 

data collection. Stored procedures within the database convert area data to raster data by 

distributing variable values associated with each geographic unit across the grid cells that fall 

within the unit. Raster to area data transformations are performed by summarizing the values of 

the raster grid cells that fall within each geographic unit. Area data and summarized raster data 

are attached to microdata records based on the geographic unit. We have also developed a Spark-

based tabulation engine that will allow users to create customized area-level tables from 

population microdata, bringing the power and flexibility of microdata to a new audience of 

researchers. 

IPUMS Terra 

IPUMS Terra is designed to make microdata, area-level data, and raster data easily interoperable. 

Using the IPUMS Terra extract builder, researchers can combine data from the three major data 

classes and obtain the results in any of the three classes. For example, IPUMS Terra can tabulate 

raster data derived from satellite images to determine the percentage of each census tract covered 

by trees and then attach that contextual information to each record of census microdata. 

Conversely, the software can tabulate population microdata to determine the density of in-

migrants to each geographic unit and then convert those statistics into a gridded raster format. 



The IPUMS Terra data collections are very large. They include microdata describing 250 billion 

microdata characteristics, 300 billion vector data points, and over a trillion pixels of raster data. 

The currently accessible IPUMS Terra data collection includes population data for over 170 

countries, global long-term average and monthly time series climate data, a variety of global land 

cover and land use datasets, and the geographic boundaries necessary to support integration 

across the collection. IPUMS Terra incorporates global census microdata from IPUMS-

International, covering 85 countries, 301 censuses and 672 million person records, as well as 

area-level tabulations of these data. For an additional 88 countries not yet participating in 

IPUMS-International, IPUMS Terra has acquired, processed, and made available aggregate 

subnational data on population by sex. IPUMS Terra raster data currently include Global Land 

Cover 2000, NASA’s MODIS Land Cover, WorldClim long-term climate averages, Climate 

Research Unit monthly time series data, and Global Landscape Initiative data on cropland, 

pasture areas, and harvested area and yield for 175 crops (Friedl 2010, GLC 2000, Harris et al. 

2014, Hijmans 2005, GLI 2015). We have developed boundary data for first-level administrative 

units in 169 countries and second-level administrative units for 91 countries. For 72 countries 

with multiple years of population data, we have created temporally harmonized boundaries 

providing geographic units that are stable over time.  

To integrate and disseminate this vast data collection, we developed workflows and supporting 

software tools for processing data and metadata. We developed a suite of Python-ArcGIS tools 

that enable efficient boundary data processing (Kugler 2015). These tools match digital 

boundaries to the geographic units represented in current and historic population datasets, 

automate temporal harmonization, and manage regionalization necessary to protect respondent 

confidentiality (Kugler 2017). We are developing additional Python tools transform aggregate 

population data published by national statistical offices in diverse formats into standard data 

structures that can be ingested into the IPUMS Terra database. IPUMS Terra tools and 

workflows are supported by a custom-built metadata management application that tracks data 

provenance from the original sources through all IPUMS Terra processing steps and produces 

complete descriptions of the final data. 

IPUMS Terra’s integrated data are disseminated to researchers, educators, policy analysts, and 

others through three public-facing applications that communicate with the IPUMS Terra 

database and extract engine through an Application Programming Interface (API). The primary 

application is the IPUMS Terra extract builder (Figure 1). The extract builder allows users to 

browse the entire IPUMS Terra data collection, access rich metadata describing the data, select 

variables and datasets from any of the three data classes, and combine diverse data sources into a 

single integrated dataset in the format appropriate for a particular investigation. 

 



Figure 1. IPUMS Terra web interface for combining and abstracting data. 

 

In addition to the main extract builder, two other applications provide alternate ways to access 

IPUMS Terra data. For users primarily interested in raster data, TerraClip provides an easy way 

to construct country-level subsets of global raster datasets, bypassing the need to identify and 

stitch together tiles or deal with otherwise cumbersome data access systems. TerraScope 

provides a map-based interface with which users can explore the area and raster portions of the 

IPUMS Terra collection, produce basic visualizations such as choropleth maps, and download 

the area-level data used in the visualizations. 

Conclusion 

IPUMS Terra offers one of the largest and most comprehensive publicly-available collections of 
data on human activities and behavior. These data are integrated with high-resolution geospatial 
information describing the environment, filling a major substantive gap. The IPUMS Terra data 
collection and integration infrastructure are a powerful resource for understanding the causes and 
consequences of the transformations in society and the environment that are reshaping the planet. 
By providing richly detailed, tightly integrated data spanning the world over many decades, 
IPUMS Terra is creating a unique test bed for social, economic, ecological, and climate models.  

Because of the richness of the data and the ease with which it can be accessed and exploited, the 
audiences for IPUMS Terra are extraordinarily diverse. In addition to social and environmental 
scientists, IPUMS Terra is used by planners, journalists, students and their teachers, and the 
broader public. The data collection makes important contributions to education and public 
understanding.  

IPUMS Terra also advances data science. The challenges of the project derive not only from the 
large scale of the data collections but also from their complexity. The population and 
environmental data are multiscale over time and space, have multiple levels of hierarchy, and 
cover a remarkable range of topics. To manage the scale, complexity, and heterogeneity of the 



data, the project engages the leading edge of data science and develops new technologies and 
processes. Innovative solutions are needed through the entire data life cycle, including collection, 
preservation, analysis, dissemination, and long-term access and management. IPUMS Terra 
provides open-source software, metadata, and workflows that can overcome these challenges and 
that can be readily adapted to spatiotemporal data in multiple scientific domains. In particular, 
our work on spatial high-performance computing will address critical bottlenecks in the 
integration and dissemination of massive spatiotemporal datasets. The infrastructure is directly 
applicable to urgent and compelling scientific and policy issues and meets the needs of large and 
diverse audience that extends beyond the academy. 
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