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Atypical combination of technologies  

in regional co-inventor networks 

 

Abstract  
We generate novel combinations of technologies from existing knowledge via collaborative 

work. Albeit inventors and their respective communities tend to be specialised, inventor 

collaborations across differently specialised peers have the potential to generate co-inventor 

networks that provide access to a diverse set of knowledge and facilitate the production of 

radical novelty. Previous research has demonstrated that short access in large co-inventor 

networks enables innovative outcomes in regional economies. However, how connections in 

the network across different technological knowledge domains matter and what impact they 

might generate is still unknown. The present investigation focuses on 'atypical' combinations 

of technologies as indicated in patent documents. In particular, the role of technological 

specialisations linked in co-inventor networks that result in radical innovation in European 

regions is analysed. It is confirmed that the share of atypical patents is growing in regions 

where bridging ties establish short access to and across cohesive co-inventor sub-networks. 

Furthermore, the evidence suggests that the strong specialisation of co-inventor communities 

in regions fosters atypical combinations because these communities manage to increase the 

scale and scope of novel combinations. Thus, bridges between communities that are specialised 

in different technologies favour atypical innovation outcomes. The work shows that not 

diversity per se, but links across variously specialised inventor communities can foster radical 

innovation. 
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1. Introduction  

Innovation in regional economies mainly occurs in collaborative work that requires 

interpersonal relations in order to transfer and combine knowledge (Bettencourt et al., 2007; 

Burt, 2004; Wuchty et al., 2007). The 'Geography of Innovation' literature (Feldman and 

Kogler, 2010) highlights the relevance of co-inventor networks to proxy the knowledge transfer 

potential of social relations within and across spatial units. In this process, inventors are linked 

together according to whether they have collectively worked on a patent previously. The 

structure of these networks indicates the innovation capacity of regions because it can capture 

the potential of knowledge transfer and combination activities (Bergé et al., 2018; Breschi and 

Lenzi, 2016; Fleming et al., 2007a; Li et al., 2014; Lobo and Strumsky, 2008). For example, 

Fleming et al. (2007a) investigated whether regional innovation benefits from the small-world 

networks of co-inventor collaboration (Watts and Strogatz, 1998). This network structure can 

catalyse complex knowledge transfer processes in cohesive co-inventor communities while at 

the same time providing access to diverse knowledge through bridging ties across inventor 

communities (Tóth and Lengyel, 2021; Uzzi and Spiro, 2005).  

Although previous research has investigated the relevance of network structure in 

regional innovation, a crucial element is still missing from the above discussion: the role of 

technological and knowledge domains along which co-inventor collaboration patterns shape. 

Little is known on whether the technological specialisation of closely-knit co-inventor 

communities or inter-connections among technologically distant communities favour regional 

innovation outcomes. In this paper, we propose an innovative approach to deal with this 

problem at the mesoscopic level of regional collaboration networks (the network communities) 

and subsequently investigate the creation of atypical inventions that require the combination of 

distinct knowledge to capture radical novelty in regions (Mewes, 2019).  

Taking an evolutionary perspective, the argument is that the formation of new co-

inventor collaborations is decisive for radically new combinations of knowledge because 

complex knowledge flows are restricted to short distances in networks (Sorenson et al., 2006). 

Yet, network formation in regions is a path-dependent process because creating new co-

inventor ties heavily dependents on earlier relationships in the network (Glückler, 2007).  

Moreover, similar knowledge is easier to combine (Boschma, 2005; Hidalgo, 2018), 

while triadic closure is also a trait of collaboration networks (Newman, 2001). Thus, most new 

collaborations remain within specialised co-inventor communities that can drive regional 

innovation towards potential lock-in (Boschma and Frenken, 2010; Giuliani, 2013). On the 
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contrary, a path-breaking variation most likely occurs when new links bridge previously 

separated parts of the network where dissimilar technological expertise reside (Glückler, 2007; 

Juhász and Lengyel, 2018). 

Our empirical approach rests on network communities: cohesive segments of networks 

that consist of densely connected nodes which are loosely connected to other communities 

(Girvan and Newman, 2002; Palla et al., 2005). Small-world networks can be decomposed to 

network communities such that inter-community ties form network bridges (Girvan and 

Newman, 2002; Watts and Strogatz, 1998). Since the detection of network communities relies 

on the structure of networks only (Fortunato, 2010), one can investigate the technological 

specialisation of detected communities and characterise bridges by the similarity or 

dissimilarity of the domains they link together. In this way, we can create new measures at the 

regional level that can capture novel aspects of regional knowledge diversity by quantifying 

access across different mesoscopic specialisations. 

Following Uzzi et al. (2013), we measure radical innovation by identifying atypical 

combinations of technologies in patents using the EPO PATSTAT database over three decades 

(1980-2014). The co-inventor network is constructed for NUTS2 regions (EUROSTAT, 2018) 

in a cumulative fashion that enables us to estimate the correlation between new link formation 

and regional level outcomes in a fixed-effect regression framework (Eriksson and Lengyel, 

2019). We apply the 'network of places' method that groups structurally equivalent innovators 

into a single node to remedy biases caused by the automatic triadic closure when projecting 

bipartite collaboration networks (Lucena-Piquero and Vicente, 2019) and measure the degree 

of small-worldness in the networks of places transformed from co-inventor networks (Neal, 

2017). Finally, we detect network communities over five-year time-windows of the networks 

of places (Blondel et al., 2008). The technological specialisation of communities, their 

interlinking, and the technological similarity of inter-linked communities are quantified on the 

regional level. This enables us to estimate the share of atypical patents in each region in the 

subsequent five-year time-window by means of these regional-level explanatory variables. 

The results suggest that the share of atypical patents is growing in those regions where 

co-inventor collaboration resembles small-world networks. This finding supports the idea that 

short access in co-inventor networks matters for combining different technological knowledge 

domains. Furthermore, we find that technological specialisation of co-inventor communities 

correlates positively with the share of atypical patents. This correlation reveals that those 

regions where inventor communities specialise in certain knowledge domains can produce 

higher levels of radical innovation. There is also a more significant potential for combinations 
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to occur between communities. Also, a growing share of bridging collaborations across 

communities with dissimilar technological portfolios further supports atypical patenting. This 

new evidence implies that not the diversity of various technologies per se, but instead, the 

presence of multiple, diversely specialised, and inter-linked inventor communities favour 

radical innovation outcomes in regional economies. 

2. Prior Relevant Insights and Hypotheses 

2.1. Co-inventor networks 
Prior knowledge provides the necessary ingredients for innovation to occur (Nelson and 

Winter, 1982; Schumpeter, 1911), but radical novelty and technological breakthroughs require 

combinations that have rarely been made before or are entirely new. Such innovations are often 

referred to as atypical combinations1 (Kim et al., 2016; Uzzi et al., 2013; Wang et al., 2017), 

blending distinct knowledge domains into new knowledge (Fontana et al., 2020; Wagner et al., 

2019). Radical innovation created in collaboration (Inkpen, 1996; Uzzi et al., 2013; Wang, 

2016) often forms spatially embedded networks (Bercovitz and Feldman, 2011; Cassi and 

Plunket, 2013; Tóth et al., 2021; Tubiana et al., 2021). Recent evidence suggests that due to 

the need for diverse knowledge, atypical innovation is concentrated more intensively in 

geographical space (Balland et al, 2020, Mewes, 2019) than innovation in general (Audretsch 

and Feldman, 1996; Bettencourt et al., 2007). Local collaborations facilitate atypical 

combinations because learning complex knowledge requires frequent interaction (Balland and 

Rigby, 2016; Sorenson et al., 2006; Wagner et al., 2019). 

Co-inventor networks, defined by links between inventors who collaborate on at least 

one patent, can approximate the role of collaborations in regional innovation (Fleming et al., 

2007a; Lobo and Strumsky, 2008). These networks are helpful for two reasons. First, co-

invention offers the potential for new knowledge combinations by bringing together inventors 

(Cowan and Jonard, 2004; Kogut, 2000; Kogut and Zander, 1992; Owen-Smith and Powell, 

2004). Most co-inventor collaboration is restricted to only a few patents, and new 

collaborations offer new combinations of knowledge (Fritsch and Kudic, 2021; Tóth et al., 

2021). Second, collaboration creates social relationships that provide grounds for effective 

knowledge transfer processes, even after the patent is published (Breschi and Lissoni, 2009). 

Although co-inventor collaboration mostly happens within firm boundaries (Whittle et al., 

2020), the created co-inventor ties can cross firm boundaries (Fleming et al., 2007a; Powell et 

 
1 In this paper, we use the terms ‘atypical combination’ and ‘novel combination’ interchangeably. 
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al., 1996); inventors can move from one firm to another. They, therefore, bring their social 

network with them (Kemeny et al., 2016; Tóth and Lengyel, 2021). These co-inventor ties help 

to characterise regional innovation via established networks within (Cantner and Graf, 2006; 

Fleming et al., 2007a) and across regions (Breschi and Lenzi, 2016; Le Gallo and Plunket, 

2020; Tóth et al., 2021; Whittle et al., 2020). 

Contradicting earlier approaches that argue for the importance of isolated inventors 

(Lobo and Strumsky, 2008), a few recent studies show that the structure of co-inventor 

networks is informative in evaluating the effectiveness of knowledge combination in regions 

(Bergé et al., 2018). For example, Fleming et al. (2007a) demonstrate that the short average 

path length in local co-inventor networks correlates with the number of patents produced in the 

region. They suggest that knowledge combination is more straightforward in regions where 

networks can foster access to distinct knowledge. Breschi and Lenzi (2016) add that 

interregional collaboration also matters because it can increase the diversity of available 

knowledge. 

This paper addresses two missing aspects that have not been dealt with in the previous 

relevant literature. First, we investigate how the mesoscopic structural properties (community 

level) of co-inventor networks influences atypical patenting activities in regions. Second, we 

explore how technological specialisation and the diversity in knowledge provided through the 

meso-level of collaborative networks affect regional innovative outcomes. 

 

2.2. Small-world networks of regional co-innovation 
-The small-world structure that is among the most reflected network characteristics in the 

regional innovation context provides one point of departure here (Fleming et al., 2007a, 

Bettencourt et al. 2007). Small-world networks consist of cohesive subnetworks, where the 

ratio of closed triangles is high, but few bridges between these cliques reduce the length of 

shortest paths in the entire network (Watts and Strogatz, 1998). This model reflects seminal 

works in the structuralist tradition of sociology that theorise information circulation in strongly 

knit cliques as a facilitator of specialised learning (Aral, 2016; Coleman, 1988). Bridging 

connections across cliques enables novel combinations by increasing access across diverse 

knowledge domains in the network (Granovetter, 1973; Burt, 2004). Studies on collaboration 

and co-inventor networks have found a non-linear, inverse U-shape relation between the small-

worldness of the network and the quality of knowledge combination (measured by the reception 

and impact of new knowledge) (Uzzi and Spiro, 2005; Tóth and Lengyel, 2021). These studies 
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suggest that an optimal structure for new knowledge production mixes the advantages of 

practical learning in cohesive cliques with access to diversity (Aral, 2016; Rocchetta et al., 

2021). 

Fleming et al. (2007a) found that small-worldness does not, but short average path 

length does, correlate with patent numbers in regions. Yet, we have reasons to think that the 

small-worldness of co-inventor networks matters for atypical combination of technologies to 

occur in regions for two reasons. First, the development of these patents requires access to more 

diverse knowledge rather than perhaps more simple incremental innovation activities. Small-

world networks can facilitate the circulation of diverse knowledge pieces due to their short 

average path length. Second, atypical combinations demand a mutual understanding of distinct 

knowledge pieces. Strongly knit cliques in small-world networks can improve the processing 

of these distinct pieces of knowledge (Fleming et al., 2007b; Ter Wal et al., 2016; Tóth and 

Lengyel, 2021; Aral, 2016). Thus, small-world networks provide significant aspects needed for 

the development of atypical combinations of knowledge, i.e. diverse access in the full network 

as well as high absorptive capacity in the network communities (Uzzi and Spiro, 2005; Cohen 

and Levinthal, 1990). 

Consequently, the medium-level of small-worldness in regional co-inventor networks 

could be optimal for atypical patenting. The theory suggests that networks possessing too low 

or too high values on this particular indicator can miss either absorptive capacity or the 

necessary diverse knowledge inputs that reside in the network. To test this non-linear 

relationship between the small-worldness of co-inventor networks and atypical innovations in 

regions, we quantify the small-worldness indicator and formulate the following Hypotheses 1a 

and 1b. 

 

H1a: The small-worldness of co-inventor networks is positively related to the 

proportion of atypical patents in the region. 

 

H1b: The quadratic term of small-worldness of co-inventor networks is negatively 

related to the proportion of atypical patents in the region.  

 

2.3. Technological specialization and diversity in co-inventor 

networks 
Although the spectrum of available technologies in a regional economy has a natural impact 

on the potential of knowledge combinations to occur, the technological dimension is still 
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missing from the small-world approach. It is widely accepted that a diverse pool of knowledge 

in urban areas (Florida et al., 2017; Glaeser et al., 1992; Jacobs, 1961) allows for atypical 

combinations (Berkes and Gaetani, 2020). However, there is a growing body of literature 

arguing that specialisation can also facilitate innovation (Beaudry and Schiffauerova, 2009; 

Lobo and Strumsky, 2008; Ó Huallacháin and Lee, 2010) when critical masses of experts 

specialised in distinct pieces of knowledge (Castaldi et al., 2015) are connected through 

knowledge transfer mechanisms (Berkes and Gaetani, 2020). For example, the Boston 

biotechnology cluster has emerged from local skills accumulated in distinct local critical 

masses in engineering and biology (Cooke 2002). Later, they were connected by social 

interaction that facilitated their combinations (Powell et al. 1996). The variety of technologies 

available in a region conditions the structure of inventor collaboration (van der Wouden and 

Rigby, 2019) and determines the potential for radical new combinations in the region (Castaldi 

et al., 2015). However, whether the specialisation of co-inventor cliques and the short access 

across similar or dissimilar knowledge in small-world networks is beneficial for generating 

radical innovation remains unknown. 

The present investigation argues that it is not a diverse pool of knowledge per se, but 

the presence of diverse specialisations and their interlinking that matter for radical innovation 

to occur within regions. Our approach is based on network communities and the bridges 

between them, which is a way to represent small-world networks, as will be discussed in further 

detail later. This approach allows for the measurement of technological specialisation in 

communities and the diversity across bridged communities. By utilizing these characteristics 

of communities and pairs of inter-linked communities, we construct region-level measures that 

can be compared with the role of the small-world network structure present in regions. 

Most related work in economic geography and beyond seems to focus on network 

dynamics in regions as well as their evolutionary characteristics (Feldman and Kogler, 2010). 

Evidence on the role of technological similarity and triadic closure in increasing the likelihood 

of inventor collaboration implies that micro-mechanisms of collaboration drive regions toward 

technological specialisation (Abbasiharofteh and Broekel, 2020; Boschma and Frenken, 2010; 

Broekel and Boschma, 2012; Cantner and Graf, 2006; Cassi and Plunket, 2013; Giuliani, 2013; 

Grabher, 1993; Ter Wal, 2013). Such mechanisms threaten radical knowledge production, 

especially in regions characterised by specialisation where inventors tend to partner with co-

inventors of similar technological profiles to a greater extent than inventors residing in 

technologically diverse cities (van der Wouden and Rigby, 2019). 
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However, Glückler (2007) theorises that the process of network retention2 can be 

counter-balanced by network variation, when otherwise loosely knit network cliques bridged 

by few collaborations create momentum for radical combinations and regional diversity. 

Systematic evidence on such balancing mechanisms between specialisation and 

diversity in collaboration networks to create novelty is somewhat limited. An exception is the 

work of Migliano et al. (2020) which describes drug discoveries with the dynamics of 

interaction networks of hunter-gatherer tribes. They demonstrate that the tribes must 

accumulate knowledge in experiments with plants separated by camps before combining these 

plants into a better drug development through the interactions across camps; an excellent 

example of the two mechanisms needed for novelty generation in small-world networks. In a 

first step there is the accumulation of specialised knowledge in cohesive network segments, 

which is then followed up by the combination of the newfound technical expertise with radical 

and novel bridges across the established network segments. 

Co-inventor networks in regions are usually large but techniques of network science 

can be used to find patterns in these complex structures. Here, we take an approach of network 

communities that are dense and cohesive subnetworks loosely connected to each other (Girvan 

and Newman, 2002; Palla et al., 2005). This network phenomenon aligns with the small-world 

theory because the subnetworks constitute strongly knit cliques, but the loose connections 

across them make the average path length short. These communities in the co-inventor 

networks represent fields of technological specialisation due to micro-mechanisms of network 

retention. Finally, inventors of similar technological profiles create such communities in the 

network in the first place (Tóth et al. 2021). 

The suggested network community approach can contribute to previous research on 

small-world networks along two lines. First, defining the borders of cohesive cliques is not a 

trivial task in small-world networks but can be done with community detection that relies only 

on network topology (Fortunato, 2010). That detection enables us to measure the technological 

specialisation of communities and the diversity across the inter-linked communities. Second, 

the communities can be re-identified over time. Therefore, two communities might merge if 

there are many bridges between them. This latter feature ensures that links across communities 

are indeed bridges. 

 
2 Network retention is the tendency for the structure of a network to be determined by pre-existing processes that 

formed the structure of the said network in the first place. 
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Based on the above argument, we formulate two hypotheses that reflect the 

simultaneous need for specialised knowledge production in cohesive co-inventor networks and 

their bridging to produce atypical knowledge combinations. The specialisation of co-inventor 

communities in specific technologies can facilitate the production of radical innovation because 

the depth of knowledge accumulated in the community increases the scale and scope of 

expertise in a specific domain (Kemeny and Storper, 2015; von Krogh et al., 2003; De Noni 

and Belussi, 2021). 

Specialisation supports new knowledge combinations within the community when 

distinct knowledge from external sources is absorbed and processed in the cohesive sub-

network (Ter Wal et al. 2016; Tóth and Lengyel, 2021) and can also provide sufficient input 

for knowledge combinations in collaboration with others (von Krogh et al., 2003; Uzzi et al., 

2013). In this latter sense, there is a need for connections between specialised communities to 

enable combinations of distinct knowledge and establish channels of subsequent knowledge 

transfer (Powell et al. 1996, Glückler 2007). To avoid potential biases of extremely specialised 

communities, we take the median of community specialisations to characterise the 

technological knowledge expertise that resides in regional economies. 

 

H2: The median level of technological specialisation of co-inventor communities in the 

region is positively related to the proportion of atypical patents in the region. 

 

H3: The proportion of inter-community ties of co-inventor networks is positively 

related to the proportion of atypical patents in the region. 

 

Finally, we aim to provide a better understanding of how bridging across co-inventor 

communities, in terms of their pairwise technological specialisation, supports the development 

of radical combinations the most. The growing literature on atypical combinations suggests 

that radically new knowledge can be generated by combining distinct knowledge pieces 

(Fontana et al. 2020, Uzzi et al. 2013, Wagner et al., 2019, Wang et al. 2017). 

A central discussion in the relevant literature, i.e. in the field of Economic Geography, 

concerns how the availability of dissimilar knowledge in a region, termed 'related' and 

'unrelated' variety, favours the creation of novel knowledge (Frenken et al., 2007). Some argue 

that unrelated variety in a region fosters radical novelty (Castaldi et al., 2015; Miguelez and 

Moreno, 2016). Others find that regions specialised in various related industries can produce 

more breakthrough innovations (De Noni and Belussi, 2021). Focusing on innovative output 
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in general, a recent study by Rocchetta et al. (2021) finds that different technological 

diversification measures, e.g. coherence and entropy-variety, exert varying degrees of non-

linear effects on regional productivity growth, and that higher productivity returns can be found 

in regions that have invested in their existing technological capabilities as well as in more 

distant knowledge domains at the same time. 

Although collaborations within regions can facilitate the combination of diverse 

knowledge (De Noni et al., 2017), the role of technological relatedness across linked 

specialisations still requires a more detailed analysis. One study on industry growth in regions 

concludes that co-worker links across related industries are particularly beneficial for weakly 

specialised local industries (Eriksson and Lengyel, 2019). On the other hand, strongly 

specialised industries – and inventor communities – might be able to process unrelated 

knowledge because of greater absorptive capacity. They can do this more efficiently through 

collaborations (Ter Wal et al., 2016). 

We expect that the likelihood of atypical patenting intensifies as the overlap of the 

technological profiles of connected communities decreases. Novel combinations are more 

likely when co-inventor communities accumulate knowledge in different domains, and then 

establish bridges to these dissimilar knowledge bases. These bridging collaboration links across 

communities increase the social proximity of otherwise loosely connected inventor groups. 

Thus, a greater degree of technological dissimilarity across these linked groups can maintain 

more diversity in the region (Boschma, 2005; Cassi and Plunket, 2014). We formalise this 

expectation in Hypothesis 4. 

 

H4: Technological similarity across bridged inventor communities is negatively related 

to the proportion of atypical patents in the region. 

3. Empirical Approach 
 

3.1. Data  

Innovation scholars have employed patent databases extensively in order to study collaboration 

networks, technological change, knowledge spaces and economic complexity (Balland et al., 

2020; Castaldi et al., 2015; Jaffe, 1986; Jaffe, 1993; Kogler et al., 2013). While the literature 

has discussed the limitations of these types of data (Archibugi and Planta, 1996; Kogler, 2015), 
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patent data indeed provide a valuable source of information to undertake empirical studies 

where the temporal dimension of inventive activities is under scrutiny. 

We utilize the European Patent Office (EPO) PATSTAT database and the final dataset 

includes 1,489,954 inventions filed by 2,059,171 unique inventors between 1980 and 2014. 

We follow the common practice of aggregating collaborative ties in seven non-overlapping 5-

year time-windows to mitigate the differences in patenting frequency between highly and 

moderately innovative regions (Abbasiharofteh and Broekel, 2020; Fleming et al., 2007a; 

Kogler et al., 2017; Menzel et al., 2017; Ter Wal, 2014). 3 The disambiguating of individuals’ 

and entities’ names to assign unique identifiers that can then be utilized in a meaningful 

network, or related, methods-driven analyses poses a challenging task.  Several contributions 

in this context, for instance Li et al. (2014) and Pezzoni et al. (2014), amongst others, have 

tackled this problem and subsequently provided a systematic approach in this regard. We 

disambiguated inventor and assignee names in the data utilized according to an advanced 

Massacrator© algorithm as described in the Pezzoni et al. (2014) paper. The database also 

contains the region of the home location of inventors. The PATSTAT database provides some 

of the harmonised indicators, e.g., assignee names, but further processing was necessary to 

locate inventors' addresses and disambiguate inventors' names. Application Programming 

Interface (API) access via two independent service providers facilitated the geocoding of 

inventors' addresses. The geocodes of inventors' addresses correspond to the NUTS2 level as 

defined by EUROSTAT (2018). 

Collaborative ties between inventors are distributed within and across 264 NUTS2 

regions. We assign interregional collaborative ties to both NUTS2 regions involved in 

developing a patented invention to ensure that regional networks are not biased by the so-called 

modifiable areal unit problem (Scholl and Brenner, 2014). Also, and in the spirit of the 

Schumpeterian view on innovation (Schumpeter, 1911; Strumsky and Lobo, 2015; Weitzman, 

1998), we utilise the information on technological knowledge domains listed in individual 

patent documents to identify what technology codes were combined for each invention (Lee et 

al., 2022). We use these data to create a proxy for the degree of atypicality that each patent 

introduces, something we return to and explain further later in this section.4  

 
3 Seven time-windows: (1) 1980-1984, (2) 1985-1989, (3) 1990-1994, (4) 1995-1999, (5) 2000-2004, (6) 2005-

2009, and (7) 2010-2014. It is important to note that we do not dissolve created ties. This implies that once a 

collaborative tie is established, it is also present in the subsequent time-windows. Thus, the sheer number of ties 

increases over time. 
4 To identify the distinct technological knowledge domains that characterize individual inventions we employ the 

Cooperative Patent Classification scheme that contains 650 individual codes at the 4-digit level. 
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3.2. Projecting bipartite networks and networks of places  

We can observe collaboration networks in patents by the co-presence of inventors in one or 

several joint patents (Broekel and Graf, 2012; Li et al., 2014; Menzel et al., 2017; Stefano and 

Zaccarin, 2013; Ter Wal, 2014). From a network perspective, inventors are nodes and ties 

between every two nodes illustrate that two inventors collaborated on developing at least one 

patent. One can optimally present and explore the co-inventorship relations using an inventor-

by-patent matrix G. Each row represents an inventor, and each column corresponds to a specific 

invention. Gij takes the value of one if the ith inventor participated in developing the jth 

invention. Otherwise, it takes the value of zero. Using linear algebra, one can project the 

inventor-by-patent matrix to a binary symmetric inventor-by-inventor matrix A (in which Amn 

=Anm). Amn takes the value of one if the mth and nth inventors collaborated on at least one 

inventive project. Otherwise, it takes the value of zero. 

While numerous empirical studies used this method in prior innovation studies to 

generate and analyse collaboration networks, there are concerns that this introduces a bias that 

affects the reliability of community detection algorithms (Newman, 2001; Zhou et al., 2007). 

The projection of inventor-by-patent networks (also known as bipartite networks) typically 

provides a high degree of network clustering in inventor-by-inventor matrices (also known as 

unipartite networks) potentially influencing the small-world indicators measured in networks 

(Uzzi and Spiro, 2005). This is especially problematic if these collaborations include more than 

three participants, which is increasingly the case in patenting (Broekel, 2019; van der Wouden, 

2018). Also, the projection introduces technology biases for clustering-related indices because 

the average team size differs substantially across sectors (Kogler et al., 2013). 

We rely on ‘structural equivalence’ to deal with the projection bias and in order to 

decrease the bias of automatic triadic closure. Structural equivalence is a social network 

concept developed by Lorrain and White (1971) and Burt (1987). They claim that nodes in a 

network are structurally equivalent if they are identical in terms of relationship and 

embeddedness patterns, which provide them with access to similar resources in the network 

(Gnyawali and Madhavan, 2001; Stuart and Podolny, 1996). In the present investigation we 

follow the method developed by Pizarro (2007). Thus, we created a new network (hereafter, 

the network of places) in which new nodes (hereafter referred to as 'places') replace a set of 

neighbouring nodes (nodes that are directly connected) that share identical structural properties 

(for a review, see Lucena-Piquero and Vicente, 2019). In other words, we group inventors into 



13 
 

a single node if they are identical in their network properties. This technique helps us to reduce 

the impact of automatic triadic closure on our network indicators. The 'network of places' are 

simplified representations of the co-inventor networks in which nodes represent inventors, or 

structurally equivalent groups of inventors, and ties represent single co-inventor ties or a bunch 

of ties going from the group of identical inventors to their collaborators. 

Figure 1 demonstrates how 'networks of places' are created from the co-inventor 

network.  In case A, the collaboration of six inventors on a single patent is transformed into a 

single node in the network of places because all inventors have similar structural properties. In 

case B, where three inventors are connected in two collaborations, no modification has been 

made in the transformation. Case C contains two projects bridged by one inventor. Thus, the 

algorithm groups inventors involved only in one project into two separated nodes connected 

by the bridging inventor. Case D is a complex composition in which one can find all the 

pairings mentioned above of inventors and projects. Some of the inventors are structurally 

equivalent, and some are different. It is worth noting that isolated places in the 'network of 

places' are either individual inventors or several inventors that are structurally equivalent. A 

higher share of isolated nodes in the network of places reveals that most inventors take part in 

one or a few projects rather than being involved in numerous collaborations. 

 

Figure 1 about here 

 

Furthermore, Figure 2 shows that while we controlled for the high degree of clustering 

in regional collaboration networks, the number of nodes and edges in each region scale linearly 

(in a log-log scale) with those of the 'networks of places.' Thus, the network of places 

transformation does not substantially change other structural properties of the original co-

inventor networks. 

 

Figure 2 about here 

 

As outlined above, the places of a focal region may include multiple inventors from 

other regions that have created collaborative ties with inventors residing in the focal region. 

Indeed, the descriptive statistics show that places include inventors from 2 regions on average 

(mean: 2.1 and median: 2). Our approach to deal with this problem is explained in Section 

3.3.2., below. 
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3.3. Measures  

3.3.1. Dependent variable  

In line with the theoretical argumentation, we seek to identify patents that introduce atypical 

technological knowledge combinations. We can determine the choice of technologies in each 

invention via the information provided in patent documents. We can thus measure the degree 

of the 'atypicality' of patents by noting how often a pair of technology codes occur in the data5, 

compared with the statistical expectation of random co-occurrence.6 Uzzi et al. (2013) have 

used this method to define the extent to which scientific publications introduce atypical 

combinations of knowledge pieces. Mewes (2019) applied a similar method to identify atypical 

patents in the US. In doing so, we follow Teece et al. (1994) and estimate the z-score to capture 

the atypicality of each technology combination. Specifically, the z-score is defined as follows: 

 

 

 

 
𝑍𝑖,𝑗 =

𝑂𝑖,𝑗 − 𝐸𝑖,𝑗

𝜎𝑖,𝑗
 (1) 

 

where Oi, j is the number of the co-occurrence of two technology codes i and j. Ei, j is the 

statistical expectation of technologies i and j co-occurring randomly, and 𝜎𝑖,𝑗  denoting the 

standard deviation of the expected co-occurrence of two given technologies. Teece et al. (1994) 

argue that if the number of occurrences of two units (technology codes here) is relatively high, 

then presumably co-occurrence of these units is driven by random effects. Thus, the expected 

co-occurrence (Ei,j) is given by: 

 

 𝐸𝑖,𝑗 =
𝑛𝑖𝑛𝑗

𝑁
, (2) 

 

where ni and nj are the overall numbers of technology codes i and j respectively, and N is the 

total number all technology codes. The square of standard deviation is defined as: 

 

 𝜎2
𝑖,𝑗 = 𝐸𝑖,𝑗 (1 −

𝑛𝑖

𝑁
) (

𝑁−𝑛𝑗

𝑁−1
). (3)  

 

 
5 Since we used 650 CPC codes at the 4-digit level, it gives 210925 (n (n-1)/2) technology pairs. 
6 This implies that we excluded patents which include only one CPC technology code at the 4-digit level. 
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Intuitively, a negative value of the z-score indicates that the number of random co-

occurrences is higher than the number of observed ones. Therefore, a negative value reflects 

an atypical combination of two technology codes. It is important to note that we iteratively 

estimated z-scores for each time-window to control for technological dynamics (Kogler et al., 

2022). In other words, each time-window includes patents from the preceding and current time-

windows but not patents from the succeeding ones. A single patent might introduce a beneficial 

atypical combination of technologies, motivating other inventors to imitate the same pattern in 

the subsequent time-windows, making the combination more common (less atypical). Figure 3 

shows the kernel density estimates for z-scores in the seven-time-windows. The results are 

consistent with Uzzi et al. (2013) and Mewes (2019), i.e. a relatively small share of all 

combinations is actually atypical. More interestingly, the percentage of atypical patents 

dropped from 30% to 25% between 1984 and 2014. Also, we used the Shannon entropy 

measure to estimate the entropy of z-score values for each time-window. We observed that the 

entropy indices increase across time-windows7, thus suggesting that inventions move towards 

the two extremes of typicality and atypicality over time. 

 

Figure 3 about here 

 

Since z-scores are estimates for the combinations of technology codes and not patents 

per se, one needs another definition at the patent level. Notably, 49% of patents include only 

one technology code, which do not introduce a combination of technology codes. On the other 

hand, 30% of patents have two technology codes that provide one combination, and 21% of 

patents combine more than two technology codes. Thus, we defined atypical patents as those 

that include at least one combination of technologies with a negative z-score. The dependent 

variable (ATYPICAL) is the share of atypical patents in each NUTS2 region and time-window. 

Figures 4 and 5 show the distribution of the share and number of atypical patents across 

European regions and different technologies.  

 

Figure 4 about here 

Figure 5 about here 

 

 
7 The Shannon entropy index for each time-window corresponds to 1984: 15.35, 1989: 15.93, 1994: 16.15, 1999: 

16.66, 2004: 17, 2009: 17.18, and 2014: 17.18. 
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3.3.2. Independent variables and controls 

Independent and control variables take into consideration factors at community, regional, and 

network levels. The first network-level variable approximates the degree of small-worldness 

in regions' network of places. Although the notion of small-worldness is clearly defined by 

Watts and Strogatz (1998), measuring small-worldness of ‘real-world’ networks has been a 

challenging task (Fleming et al., 2007a; Humphries and Gurney, 2008; Neal, 2017). One of the 

main motivations to combine structurally equivalent inventors into places is to reduce the 

impact of automatic clustering of three or more inventors who collaborated in the development 

of a single patent. Next, we followed the more recently suggested method of a 'double-graph 

normalised index' to approximate the small-worldness of the networks of places (Neal, 2017). 

This method overcomes the limitations associated with small-world indices that are normalised 

only by random graphs. The double-graph normalised index also enables us to compare indices 

of networks of a distinct size. The small-worldness index is defined as: 

 

 𝜔 =
𝐿𝑟

𝐿
−

𝐶

𝐶𝑙
 (4) 

 

where L denotes the mean path length of the observed networks of places and Lr the same index 

of random reference networks8. C and Cl denote the clustering coefficients of observed 

networks of places and reference lattice networks. ω ranges between minus one (lattice 

network) and one (random network), with values near zero representing a high degree of small-

worldness. For the sake of concreteness, we transformed ω in a way that large values (near 

one) represent a high degree of small-worldness, and small values (near zero) correspond to 

other structural properties (random or lattice).  

 

 𝑆𝑀𝐴𝐿𝐿𝑊𝑂𝑅𝐿𝐷𝑁𝐸𝑆𝑆 = 1 − |𝜔| (5) 

 

The random and lattice reference networks are simulated based on methods suggested 

by Erdős and Rényi (1960) and Watts and Strogatz (1998), respectively. It is important to note 

that we created specific reference networks for each network of places having the same number 

 
8 Contrary to the original model of small-worldness suggested by Watts and Strogatz (1998), ‘real-world’ 

networks normally consist of multiple components. To estimate the mean path length of the observed and 

simulated networks of places, the geodesic distance between nodes in different components corresponds to the 

number of nodes in the network minus one. 
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of nodes and density. Thus, SMALLWORLDNESS (network-level) captures the extent to which 

an observed network of places approaches the maximum level of small-worldness (i.e., 

SMALLWORLDNESS equals to one) (Neal, 2017). 

Other variables of interest in this paper underline the mesoscopic properties of the 

networks of places, which capture the distribution of knowledge pieces regarding various 

technologies within a region. We identified a set of places that are more densely connected 

compared to the rest of places in the network of places. Intuitively, one can expect that places 

that are more densely connected include inventors with the same or similar expertise and 

underlying knowledge bases. Yet, few inventors might bridge cognitive gaps and connect two 

or several cognitively distant places. It is worth noting that all places of a region (e.g., Region 

A), and network communities, include inventors located in the same region (Region A) and 

may include also inventors from other regions (Region B and C) that collaborated with 

inventors from this focal region (Region A). 

Empirically, we applied a community detection procedure to identify a set of densely 

connected places. While the theoretical argument is straightforward, the network science 

literature provides numerous community detection methods that do not necessarily provide 

comparable results. Their accuracy and efficiency mainly depend on networks' size and 

structural properties (Clauset et al., 2004). 

Yang et al. (2016) conducted an empirical analysis and compared the accuracy and 

efficiency of eight major community detection algorithms using various networks of different 

sizes and structural properties. They used the Lancichinetti–Fortunato–Radicchi benchmark 

graph to test the accuracy of the community detection algorithms (i.e., fast greedy, info map, 

leading eigenvector, label propagation, multilevel, walk trap, spin glass, and edge 

betweenness). The results suggest that the multilevel algorithm (also called the Louvain 

algorithm) provides a greater accuracy when the number of nodes displays high variance and 

exceeds 1000, and μ (the mixing parameter9) is greater than 0.5. Also, the time complexity of 

the multilevel algorithm is 𝒪(𝑁 𝑙𝑜𝑔𝑁) which is considerably faster than most well-known 

algorithms. For instance, the computational complexity of the edge betweenness algorithm is 

𝒪(𝐸2𝑁). We opted for the Multilevel algorithm10 (Blondel et al., 2008) because this algorithm 

offers reasonable levels of accuracy and efficiency given that networks of places vary 

considerably in size and density. It is important to note that the Multilevel algorithm counts 

 
9 The mixing parameter is the sum of the number of edges connecting to other communities divided by the sum 

of nodes’ degree in the given community. 
10 We used the igraph R package by Csardi and Nepusz (2006) to apply the multilevel algorithm. 
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isolated nodes (in our case isolated places) as single communities. Similar to the work done by 

Abbasiharofteh et al. (2021), we deliberately do not consider them as communities because 

such isolated places poorly contribute to the diffusion of knowledge.  

On average, communities include 6.4 places (between 4.8 and 7.1 places across seven 

non-overlapping time-windows)11. The Île de France region surrounding Paris has the highest 

number of communities (aggregated across all time-windows), followed by two German 

regions (Ober Bayern and Stuttgart). The distribution of the community frequency is highly 

skewed, which implies that a few regions have a high number of communities, whereas many 

regions include a limited number of communities. Yet, the skewness of this distribution 

decreases over time. The number of communities strongly correlates with patent and inventor 

numbers of regions in the same time-window (the Pearson correlation coefficients: 0.95 and 

0.96, respectively). However, the sheer community number correlates less strongly with the 

population of regions (the correlation coefficient: 0.26)12. Figure 6 illustrates the distribution 

of community frequency across regions and seven time-windows.  

 

Figure 6 about here 

 

To capture the degree of communities' specialisation for each region, we used the 

Hirschman-Herfindahl Index (Hall and Tideman, 1967), which measures the concentration of 

technologies in each community. SPECIALIZATION is a region-level variable, measured by 

the regional median of the Hirschman-Herfindahl Index of technological specialization of 

network communities in the region, and time-window. We deliberately used the Herfindahl-

Hirschman Index because this measure is not strongly correlated with the size of communities 

(the Pearson correlation coefficients: -0.11). This index’s median ensures that extremely 

specialised communities do not cause measurement biases at the regional level. We test other 

region-level aggregates (e.g., mean and standard deviation) that provide similar results (a 

further discussion on that follows below). It should be noted that the concentration of 

 
11 To ensure that the identified communities are robust, we have iteratively run the algorithm starting from 

different nodes in the network of places. Although each time the results slightly change, the outcomes are strongly 

correlated. Particularly, we ran the Louvain algorithm and detected communities in each network of places ten 

times and randomly set the resolution parameter following a uniform distribution. We used Cramer's V (a measure 

of association between two nominal variables) to estimate the association between the membership of nodes in 

detected communities. The averaged value of Cramer's V coefficients (0.99) suggests that the outcomes of 

community detection algorithm are not arbitrary, and that they do not dependent on the parameters of the 

algorithm. 
12 Note that the number of regions’ communities normalised by the inventor number is even less strongly 

correlated with population (the correlation coefficient: 0.03). 
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technologies in each community approximates the technological portfolios of inventors 

embedded in the given community because inventors tend to utilise technologies like the ones 

they used in the past. In other words, although SPECIALIZATION approximates technological 

specialization of communities based on patents developed by inventors in such communities, 

this variable is correlated with the portfolios of corresponding inventors. 

We needed to construct a variable that measures the inter-connectedness of 

communities in regions. Therefore, it is important to say that networks with different number 

of nodes typically show different structural properties, and we cannot directly compare size-

dependent network indices. Thus, we followed the method suggested by Cimini et al. (2019) 

and rewired each network of places 100 times while keeping their size and the degree sequence 

constant. In other words, we randomly assigned ties to places while we induced a degree 

distribution like the one of the observed networks of places. As a result, the number of ties each 

place (and, as a result, the overall number of ties) remains the same compared to the underlying 

network of places, whereas ties connect different sets of places in the rewired networks of 

places. Then, we normalised the number of inter-community relations by subtracting it from 

the average value of the number of inter-community ties observed in the rewired networks. 

Finally, we calculate SICT (community-level) which corresponds to the share of the inter-

community links by dividing the normalised number of inter-community relations by the total 

number of ties in the given network of places corresponding to each NUTS2 region in each 

time-window.13 

While we have an intuitive idea that communities are a hub of cognitively close 

inventors separated from other cognitively distant communities, in large regions with numerous 

communities there might be several communities with similar technological portfolios 

separated by other socio-economic forces that are invisible to us. Thus, the increase in the 

number of communities does not necessarily correlate with the technological diversity of a 

given region. To substantiate this claim, we used the technology codes (CPC codes at the 4-

digit level) utilised to develop patents filed in each region-time in conjunction with  an entropy-

based measure (ranges between zero and one) to approximate the technological diversity. Our 

observation suggests that while the size of a region (i.e., inventor number) correlates with the 

 
13 The SICT measure might be different on the network of places than on the network of inventors, because the 

transformation from inventors to places might eliminate more intra-community ties than inter-community ties. 

Therefore, we have calculated SICTINV by assigning inventors to the communities detected on the network of 

places and counting intra-, and inter-community co-inventor links instead of links across places. The Pearson 

correlation between SICT and SICTINV is 0.93 suggesting that the network of places transformation does not 

introduce a major bias to the SICT calculation. 
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number of communities in each region (the Pearson correlation coefficient: 0.95), these two 

variables seem not to be firmly related (0.23 and 0.27, respectively) with technological 

diversity. 

Also, communities are not entirely similar or dissimilar, and we expect to see a varying 

degree of overlaps between technological portfolios among connected communities. Therefore, 

we calculated the Spearman rank correlation coefficients for each pair of communities (in each 

region-time) connected by at least one inter-community collaborative tie. The Spearman rank 

correlation (ranging between -1 and 1) is defined as: 

 

 

𝜌 = 1 −
6 ∑ 𝑑2

𝑝(𝑝2 − 1)
 

 

(6) 

where d and p are the difference in the paired rank of technology codes in two connected 

communities, and the number of technology codes, respectively. The Spearman rank 

correlation is the preferred specification because monotonic relationship between the number 

of technology codes in two communities is not a strict assumption of this measure compared 

to the one of the Pearson correlation (Broekel and Brenner, 2007; Fornahl and Brenner, 2009)14. 

Using the Spearman rank correlation coefficients, SIMILARITY is the median of the distribution 

of all pairwise similarity coefficients of connected communities for each NUTS2 region in each 

time-window. Regions with greater (smaller) values of this variable show a relatively higher 

(lower) degree of technological overlaps among their connected communities. Figure 7 

illustrates the distribution of the variable SIMILARITY across European regions over time. 

Figure 8 illustrates the specialisation of co-inventor communities, the share of inter-community 

ties, and the technological similarity across communities.  

Even though many network places include inventors from different regions, the regional 

aggregation of the community-level indicators helps us to avoid the problem of assigning 

inventions to the regions that were actually created extensively in other regions.  The number 

of inventors and places are strongly correlated with the number of communities in the region 

(the Pearson correlation coefficients are 0.95 and 0.94, respectively) suggesting that the 

community-level measurement captures local innovation. On the contrary, the share of 

interregional ties (defined later) is not correlated with SMALLWORLDNESS, 

 
14 The Spearman rank correlation coefficients are found to be positively correlated with the cosine similarity 

measure (the Pearson correlation coefficient: 0.55), and highly correlated with the Jaccard similarity index (the 

Pearson correlation coefficient: 0.96). 



21 
 

SMALLWORLDNESS^2, SPECIALIZATION, SICT, and SIMILARITY (the Pearson correlation 

coefficients: -0.04, 0.06, -0.12, -0.07, and -0.11 respectively) also signalling that regions' 

engagement in inter-regional collaborations are independent from our measurements. Finally, 

we weight the values of specialization, the share of inter-communities, and similarities indices 

of places by the share of local inventors before aggregating at the regional levels for creating 

the main network variables (i.e., SPECIALIZATION, SICT, and SIMILARITY) and find a strong 

correlation between the original and the weighted measures (the Pearson correlation 

coefficients are 0.85, 0.96, and 0.96 respectively). These tests confirm that the network 

variables are not biased by inter-regional relations and can indeed capture the role of local co-

inventor collaboration in atypical knowledge combinations.  

 

Figure 7 about here 

 

Figure 8 about here 

 

In addition to the four main independent variables, we employed several control 

variables (regional-level variables). Firstly, the related variety literature has provided empirical 

evidence that regions are more inclined to diversify into related products and activities (Balland 

et al., 2018; Boschma et al., 2015; Boschma, 2016; Hidalgo et al., 2007).  Nevertheless, it is 

still an open question whether related or unrelated variety contributes to atypical patenting 

(Castaldi et al, 2015; De Noni and Belussi, 2021, Miguelez and Moreno, 2016). Following the 

method developed by Hidalgo et al. (2007) we measured the related density of each technology 

code of regions, and subsequently employ the average related density (RELATEDNESS) for 

regions in each time-window (van der Wouden and Rigby, 2019). It is worth noting that this 

variable correlates with various variables capturing the size of regions, such as the number of 

patents, number of inventors, number of communities, and GDP. Thus, we refrained from 

including these latter variables in the regression models. 

Also, we built on the method of reflection developed by Hidalgo and Hausmann (2009) 

to control for the effect of technologies that are not ubiquitous in all regions (i.e., complex 

technologies). These technologies might provide comparative advantages for some regions 

because inventors in such regions can combine spatially less ubiquitous technologies to 

introduce atypical patents. The variable COMPLEXITY corresponds to the median value of 

complexity indices of technology codes included in patents in each region and time-window. 

In other words, COMPLEXITY controls for the extent to which regions include complex 
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technologies in each time-window.15 Since technologies are dynamic and their spatial 

distribution may change over time, we iteratively calculated the complexity of technologies for 

each time-window. Thus, this variable is not biased by the changing number of technology 

classes over time.  

Besides, we added a proxy for how inventors in regions tap into external knowledge 

pools by measuring the share of interregional ties. This variable corresponds to the normalised 

number of the interregional relations divided by the total number of ties in each NUTS2 region 

and time-window (INTERREGIONAL). Additionally, POPULATION is a size-related control 

variable that corresponds to the regions' population (log-transformed) in each time-window. 

Moreover, we need to control for other structural properties of the networks of places 

to ensure that our new variables have a significant explanatory power. Following similar 

empirical works in innovation studies that investigate the structure of co-inventor networks 

(Bergé et al., 2018; Breschi and Lenzi, 2016; Lobo and Strumsky, 2008; Lucena-Piquero and 

Vicente, 2019; van der Wouden and Rigby, 2019), we created variables for density (DENSITY) 

and share of isolates16 (ISOLATE). In addition, we normalised the number of regions' 

communities17 by inventor numbers (COMMUNITY). As clarified earlier in this subsection, we 

used a rewiring method to normalise network indices. Also, we refrain from creating a variable 

capturing the centralisation of regional inventor networks because that network index correlates 

significantly with SPECIALIZATION. Van der Wouden and Rigby (2019) showed that 

specialised cities in the US have relatively denser co-inventor networks than diversified ones. 

A higher value of network density coupled with a tendency to preferentially establish new 

relations with inventors having a somewhat higher number of ties (Barabási and Albert, 1999) 

may account for a high correlation coefficient of SPECIALIZATION and regional network 

centralisation.  

  

3.3.3. Model construction 

We opted for a fixed effects panel regression model with two-way fixed effects on regions and 

time-windows that controls for all types of unobservable regional- and time-variant 

 
15 We used the EconGeo R-package developed by Balland (2017) for estimating the related density and complexity 

coefficients. 
16 ISOLATE (the share of isolated places) corresponds to the number of isolated places divided by the total number 

of places in each region and time-window. 
17 The number of communities is strongly correlated with the number of inventors and places in each region (the 

Pearson correlation coefficients: 0.95 and 0.94 respectively). On average, communities include 9 inventors 

(median: 7.4). 
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heterogeneities. To mitigate endogeneity problems, independent variables are lagged by one 

time-window.  

 

 

𝑌𝑟,𝑡 = 𝛼 + 𝛽1𝑆𝑀𝐴𝐿𝐿𝑊𝑂𝑅𝐿𝐷𝑁𝐸𝑆𝑆𝑟,𝑡−1 +   𝛽2𝑆𝑃𝐸𝐶𝐼𝐴𝐿𝐼𝑍𝐴𝑇𝐼𝑂𝑁𝑟,𝑡−1 +

 𝛽3𝑆𝐼𝐶𝑇𝑟,𝑡−1 +  𝛽4 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌𝑟,𝑡−1+ 

 𝛽5𝑁𝑟,𝑡−1 +  𝛽6𝑍𝑟,𝑡−1 + 𝜑𝑡 +  𝜇𝑟  +  ε𝑟,𝑡 

(7) 

 

The dependent variable ATYPICAL is the share of atypical patents in each region and 

time-window; SMALLWORLDNESS (and its quadratic form), SPECIALIZATION, SICT, and 

SIMILARITY denote the independent variables. Nr,t-1 stands for a set of network related 

variables, i.e., ISOLATE, COMMUNITY, and DENSITY. Similarly, Zr, t-1 represents four control 

variables that capture the degree of relatedness (RELATEDNESS) , technological complexity 

(COMPLEXITY), population (POPULATION) in regions, and the share of interregional ties 

(INTERREGIONAL). φt is a time-window fixed effect, 𝜇r is a region fixed effect, and εr, t 

denotes regression residuals. 

 

4. Results and discussion  

We conducted a set of fixed effects panel regression models with control variables and added 

variables of interest stepwise. We tested for heteroscedasticity in the model. The distribution 

of residuals does not perfectly follow a normal distribution (kurtosis: 5.28). Therefore, we use 

the heteroskedasticity-consistent White estimation of robust standard errors (White, 1980). 

Table 1 reports the results of the regression models with robust standard errors.18 The predictive 

power of models improves as we add new variables to the regression models. However, the 

predictive power slightly decreases after including variables that capture the effects of isolate 

and community numbers. Diagnostics for multicollinearity are estimated by variance inflation 

factors (VIF) for each predictor variable. Although there is controversy about what value 

should serve as a threshold value for multicollinearity, there is strong evidence of 

multicollinearity if the value of VIF for a given variable exceeds 10 (Chatterjee and Price, 

1995). However, a more conservative view defines a threshold value between 3 and 5 (Kock 

and Lynn, 2012). The multicollinearity test of the full model shows relatively high VIF values 

 
18 To run the models, estimating VIFs and robust standard errors we used the following R-packages: plm by 

Croissant and Millo (2008), sandwich by Zeileis (2004), and lmtest by Zeileis and Hothorn (2002). 
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for RELATEDNESS, ISOLATE, and COMMUNITY (3.25, 5.39, and 5.55, respectively). Thus, 

we refrain from interpreting the reported coefficients of these three variables.  

Considering the obtained results, these provide evidence of the positive relation 

between the small-world structural property of regions' network of places and the increase in 

the share of atypical patents in the next time-window. This finding is in line with the argument 

that increasing small-worldness triggers innovation because this structural property increases 

absorptive capacity in network communities through local clustering and facilitates a more 

effortless information transfer through decreased average path length (Cowan and Jonard, 

2003; Schilling and Phelps, 2007; Uzzi and Spiro, 2005). Our result does not support the one 

by Fleming et al. (2007a), who argued that both larger connected components and short average 

path length (and not the combined effects of these two variables, i.e., small-world structure) 

are positively related to innovative regional capabilities. Also, contrary to Uzzi and Spiro's 

(2005) finding, the reported coefficient of the quadratic term for small-worldness does not 

provide evidence for an inverse U-shape relation between small-worldness and an increase in 

the share of atypical inventions. 

The reported coefficient of the variable associated with SPECIALIZATION is positive 

and statistically significant. The share of inter-community ties SICT has a significantly positive 

impact on the share of atypical patents. The negative and significant coefficient of SIMILARITY 

suggests that technological proximity between connected communities correlates negatively 

with the dependent variable. Because we created networks cumulatively (we do not eliminate 

old ties), the fixed effect regression captures the impact of changing technological similarity 

across communities that have been linked earlier or are linked by new ties more recently. It is 

important to note that we created an alternative variable for similarity based on the pair-wise 

technological proximity of all communities (and not exclusively based on connected ones). 

Consistent with our theoretical arguments, the new variable is not significantly correlated with 

the dependent variable. The SICT coefficient becomes significant after including SIMILARITY 

in Model 5 and remains consistent across all models with various specifications. This finding 

also aligns with our theoretical argument and suggests that inter-community ties contribute 

more to the share of atypical inventions in regions if they bridge technologically dissimilar 

communities. These results support four out of the five hypotheses formulated in this paper 

(H1a, H2, H3, H4, but not H1b). 

 

Table 1 about here 
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The complexity of patents (COMPLEXITY) seems not statistically related to the extent 

to which regions generate atypical patents. At first glance, this result might come as a surprise. 

However, Strumsky and Lobo (2015) demonstrate empirically that recent patents are mainly 

developed by the 'reusing' and 'recombination' of existing technological capabilities. Although 

the authors do not provide specific evidence for atypical patents, this might explain why 

technological complexity does not impact the share of atypical patents. Of course, this calls for 

careful empirical research in the future. Similarly, the results suggest that the share of 

interregional relations and regions' population do not account for regions' ability to introduce 

atypical inventions. 

The inclusion of a variable that captures the effect of the density of regions’ networks 

of places supports the arguments of Vicente (2017) and Abbasiharofteh (2020) that dense 

network relations do not necessarily improve the diffusion of knowledge and support 

innovative performance. In a similar vein, our result suggests that network density does not 

correlate significantly with the relative number of atypical patents. Similar, and across the 

entire spectrum of invention, Lobo and Strumsky (2008) did not find positive correlations 

between the patenting rate and the density of connections across US metropolitan areas. 

While we controlled for already identified critical factors at the micro-level (e.g., 

ISOLATE) and the macro-level (e.g., RELATEDNESS), our main contribution concerns those 

variables that capture the impact of the mesoscopic properties of regional collaboration 

networks (i.e., co-inventor communities). The same is true for their technological portfolio on 

the relative number of atypical inventions. We find that regions with inventors that are part of 

co-inventor communities with higher specialisation tend to introduce more atypical patents. 

Connections that bridge segregated communities have a strong positive impact on atypical 

patenting suggesting that these links enable the combination of distinct knowledge domains.  

Such combinations are even more likely if the inter-community links bridge 

technologically differently oriented communities. There is evidence that inventors partly create 

collaborative ties with the ones with whom they are cognitively proximate (Boschma, 2005; 

Nooteboom, 2000). Over time, however, the high degree of cognitive proximity might lead to 

redundancy and the exhaustion of radically new ideas. Therefore, these findings corroborate 

the rationale behind the small-world theory that postulates the simultaneous need for efficient 

learning in locally cohesive networks and access to diverse knowledge through bridges (Aral, 

2016; Uzzi and Spiro, 2005). Although this effect emerging from the meso-level (communities) 

of collaboration network has been a long-standing conjecture, most empirical works in 

innovation studies have focused only on the structural attributes of networks at the macro- 
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(networks) and micro-levels (individuals). They have left out the technological domains that 

shape these networks and determine the type of knowledge access in networks (Breschi and 

Lenzi, 2016; Fleming et al., 2007a; Lobo and Strumsky, 2008; van der Wouden and Rigby, 

2019). 

Interestingly, we observed that the small-world structural property correlates positively 

with the growth of atypical patents, but not with the one of all patents (see Table 2). Indeed, 

this finding resonates with Fleming et al. (2007a), who found that small-worldness is not 

associated with the increase in the total number of patents in regions. The comparison of the 

two models, i.e., Table 1 above and Table 2 below, is in line with our original argument. The 

small-world structural property and the connection of communities are critical for introducing 

atypical patents, perhaps because this type of invention requires the combinations of different 

knowledge pieces, which is not necessarily the case for all patents, most of which are identified 

as typical. Having mentioned the main differences of the two models, the similarity between 

connected communities is nevertheless less significant, while specialisation correlates 

positively with the overall patent growth rate. 

 

Table 2 about here 

 

To ensure the robustness19 of our models, we conducted several checks. First, we used 

the mean and standard deviation (instead of the median) of the distribution of the Hirschman-

Herfindahl indices for technologies embedded in each community to create alternative 

variables to approximate the degree of regions' specialisation. As a result, the reported 

coefficients for alternative specialisation variables align with the original ones. At the same 

time, the new models support the positive and negative associations of the share of inter-

community ties and the similarity of connected communities with the dependent variable. 

Second, we added the dependent variable of each previous time-window (the share of 

atypical patents) as an independent variable in the models. This variable enables us to capture 

dynamics across each consequent time-window. The results suggest that while the growth rate 

of the share of atypical patents is significantly decreasing, the sign and significance of the 

variables of interest do not change. 

Third, we ran a model with a new variable that captured the effect of assortativity (also 

known as assortative mixing) in the regions' network of places. This variable 

 
19 All robustness checks are available upon request. 
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(ASSORTATIVITY) is the Pearson correlation between places' degrees that are directly 

connected. The implication is that the variable increases if highly connected places are 

connected at the expense of places that occupy peripheral positions. The result does not provide 

evidence for the positive or negative relation between assortativity and the increase in the share 

of atypical inventions. This finding is contrary to the argument put forward by Vicente (2017) 

and Lucena-Piquero and Vicente (2019) who claim that assortative relations bring about an 

unfortunate network structure that hinders the optimal diffusion of knowledge between the core 

and periphery of networks. 

Forth, we used the normalised median size of communities (COMMUNITY_median) 

instead of the normalised community number (COMMUNITY) in the models. As a result, the 

new and original variables correlate weakly (the Pearson correlation coefficients: 0.26). 

Although this specification led to a slightly better predictive power of the models, the sign and 

significance of the variables of interest are consistent with the ones of the original full model 

specification. 

Fifth, although the panel fixed-effects models do not strongly violate the basic 

assumptions of linear models, one may argue that the dependent variable is a share (i.e., the 

share of atypical patents) and being bounded on two sides may decrease the efficiency of 

estimated models. To remedy this situation, Ferrari and Cribari-Neto (2004) proposed a beta 

regression model for cases in which dependent variables are rates, proportions, or concentration 

indices. To ensure the reliabilities of the results, we estimated a beta regression using betareg 

package in R (Cribari-Neto and Zeileis, 2010). The sign and the significance of the four 

variables of interest align with the ones of the panel fixed-effects model. 

Finally, following the lines of arguments developed in the conceptual part of the paper, 

one might expect that regions could excel in introducing atypical inventions when the share of 

inter-community ties and dissimilarity of connected communities concurrently increase. In a 

similar vein, regions may benefit from the joint effects of the share of inter-community ties and 

the specialisation of communities. Thus, we specified regression models with two interaction 

terms (SICT × SIMILARITY and SICT × SPECIALIZATION). The models did not provide 

empirical evidence for such multiplicative effects, probably because we aggregate 

specialisation and co-inventor community measures to the regional level. Yet, these joint 

effects between community specialisation and interconnectedness might prevail on lower 

levels of aggregation that can be a matter of future research, as discussed in the next section. 
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Conclusion  

A plethora of literature stresses the path-dependent nature of economic and technological 

progress and seeks to understand how path-breaking advances help to renew the capacity of 

local economies (Boschma et al., 2015; Carnabuci and Bruggeman, 2009; Dosi, 1982; Frenken 

et al., 2007; Glückler, 2007; Kuhn, 1962). The ongoing specialisation versus diversity debate 

is very much at the core of this line of inquiry and most recent efforts investigate how 

specialised individuals, firms, or industries can establish and benefit from diversity in local 

ecosystems (Balland et al., 2022, De Noni and Belussi, 2021, Eriksson and Lengyel, 2019, Kim 

et al., 2022). Our results speak to these debates by emphasising the role of collaboration 

networks that can capture path-dependent and path-breaking dynamics at the meso-level via 

practical tools that link micro-level specialisation tendencies with the benefits of macro-level 

diversity. 

We find new evidence that small-world networks of co-inventor collaboration favour 

atypical combinations of technological knowledge domains more extensively in those regions 

where communities of inventors are specialised in different technologies bridged by 

collaborations. By distinguishing between typical and atypical technological knowledge, we 

provide empirical evidence that both types of knowledge benefit from specialisation and being 

connected to technologically dissimilar ones. However, a small-world structural property along 

with a higher relative number of inter-community relations certainly favours the creation of 

atypical technological knowledge.  

These results suggest that it is neither specialisation nor diversity at the regional level 

per se that favours innovation, which resonates with recent findings by Rocchetta et al. (2022). 

Instead, the presence of multiple specialisations at the community level and their connections 

can help knowledge combinations in regions. We argue that meso-level network mechanisms 

of collaborations are decisive for regional innovation, and that they can generate benefits that 

derive from the advantages of being specialised and diverse at the same time. Endogenous 

network formulation, driven through technological similarity and triadic closure, helps to 

accumulate specialised knowledge in cohesive regional subnetworks leading to an increase in 

the scale and scope of potential combinations. At the same time, bridging ties that connect 

divergent specialisations in separated parts of the network can provide the necessary access to 

diverse knowledge. 

This evidence provides new insights for regional innovation policy on how the 

generation of radical inventive outcomes can be fostered via the support of a particular 
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constellation of collaboration patterns. In particular, the recommendation is to encourage and 

to enable specialised collaborations and bridging collaborations in tandem. Regions that 

manage such a setting are more likely to create more considerable proportions of atypical 

inventions that have distinct specialisations of knowledge bases. Thus, supporting the 

endogenous network formation in diversely specialised, incremental knowledge production is 

beneficial for enabling and increasing the potential of future, novel knowledge re-combination 

processes. It is specialised communities and local strongholds that are needed in the first place 

to generate something radically new in the long run. Nevertheless, the connections across 

diverse sets of specialisations are also crucial. Bridging collaborations among actors and 

entities of dissimilar knowledge might require policy support because community bridging 

demands extra motivation in the first place. 

In this regard, the present investigation has direct implications for place-based 

innovation policies. In the European context, Smart Specialisation has been one of the central 

place-based innovation policies. Aiming at regional economic growth by building on existing 

competencies, Smart Specialisation supports diversification into related economic activities, 

entrepreneurial discovery processes, and local institutions (Balland et al., 2018; Kogler, et al., 

2017; Foray et al., 2011, Rigby et al., 2022). In this ongoing discussion, finding the right 

balance between specialisation and diversity is a significant challenge for avoiding the lock-in 

of related development and mitigating the high risks of diversification in unrelated activities. 

Our results suggest that specialising into several technologies and promoting inter-community 

bridges between such specialised islands could be a better strategy for Smart Specialisation.  

The results are relevant in the context of mission-oriented policies as well. An 

increasing discussion claims that solutions to tackle grand societal challenges require inter-

disciplinary collaborations (Mazzucato, 2018). However, such collaborations do not 

necessarily occur due to the path-dependent nature of creating collaborative ties and the 

demand for institutional and financial support. Since atypical inventions are associated with 

interdisciplinary collaborations (Fontana et al., 2020), the results of this paper on the role of 

bridging collaborations across different knowledge domains can be used as a point of departure 

for further research to understand the way institutional and interaction failures can be 

minimised in the context of mission-oriented and sectoral policy objectives (Wanzenböck and 

Frenken, 2020; Janssen and Abbasiharofteh, 2022; Simensen and Abbasiharofteh, 2022; 

Kabirigi et al., 2022). 

We acknowledge several limitations of this study. First, we analysed the co-occurrence 

of technology codes on patent documents to approximate atypical technology combinations 
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and identify atypical patents: 49% of filed patents include only one technology code (at the 4-

digit level). We did not investigate such patents as they do not provide any combination of 

technology codes. Future studies can build on newly developed Natural Language Processing 

(NLP) methods to alternatively identify atypical patents by analysing the text of patent 

documents.  

Second, it is of critical importance to distinguish between atypical inventions and 

breakthroughs. While one can single out breakthroughs by the atypical combination of existing 

and new technologies, they usually receive a higher forward citation and a longer lifecycle. We 

acknowledge that the focus of this study was exclusively on exploring factors that may trigger 

atypical inventions. Indeed, a larger share of inventions with atypical technology combinations 

are doomed to fail, whilst successful atypical inventions have higher payoffs (Fleming, 2001). 

Thus, we encourage future empirical studies to determine the key factors that account for the 

development of atypical inventions with exceptional impact on future technologies and the 

commercial success of underlying products and services.  

Third, most inventor collaboration happens within the boundaries of firms that our 

exercise could not consider. Since we have kept past co-inventor ties and grew their networks 

cumulatively for the sake of the fixed-effect regression specification, we were not able to 

identify what co-inventor links remained within firms’ boundaries and which links have linked 

more firms due to inventor mobility. These decisions have limited us in analysing how strategy, 

alliances, and competition of firms influence atypical innovation in regions. Future research, 

similar to Wanzenböck et al. (2022) who provide already some insights into the relationship 

between a regions’ organisations’ network structure and its ability to enter new specialisations, 

should shed light on these mechanisms by generating co-inventor networks differently and 

focusing more on inter-firm links.  

Fourth, alternative approaches should be developed in future research to tackle 

methodological challenges of investigating knowledge domains in small-world collaboration 

networks and especially how automatic clustering can be dealt with. For example, the inter-

community and inter-regional links might be overrepresented in the network of places approach 

in case the transformation eliminates intra-community and intra-regional ties disproportionally. 

Therefore, the network of places method might be problematic to sort out bridging 

collaborations in studies that aim to understand knowledge combination in collaboration 

networks on a lower level of aggregation. 

Last but related to the previous point, we do not find multiplicative effects of 

community specialisation, the proportion of inter-community ties, and the similarity of inter-
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linked specialisations on the regional level. Taking the median levels of these community-level 

indicators to characterize regions might be a reason for the missing multiplicative effects. 

Nevertheless, significant joint effects can be expected on a lower level, based on previous 

results (Eriksson and Lengyel, 2019). Therefore, we urge future research to investigate how 

specialisation and access to diversity in small-world collaboration networks influence 

knowledge combinations on the level of individuals, firms, and industries. 

 

References 

Abbasiharofteh, M., 2020. Endogenous effects and cluster transition: A conceptual framework 

for cluster policy. European Planning Studies 30, 1–24. 

doi:10.1080/09654313.2020.1724266. 

Abbasiharofteh, M., Broekel, T., 2020. Still in the shadow of the wall? The case of the Berlin 

biotechnology cluster. Environment and Planning A: Economy and Space 46 (3). 

doi:10.1177/0308518X20933904. 

Abbasiharofteh, M., Kinne, J., Krüger, M., 2021. The Strength of Weak and Strong Ties in 

Bridging Geographic and Cognitive Distances. ZEW Discussion Paper No. 21-049, 

Mannheim. 

Aral, S., 2016. The Future of Weak Ties. American Journal of Sociology 121 (6), 1931–1939. 

doi:10.1086/686293. 

Balland, P.-A., Broekel, T., Diodato, D., Giuliani, E., Hausmann, R., O'Clery, N., Rigby, D., 

2022. The new paradigm of economic complexity. Research Policy 51 (3), 104450. 

doi:10.1016/j.respol.2021.104450. 

Balland, P.-A., Jara-Figueroa, C., Petralia, S.G., Steijn, M.P.A., Rigby, D.L., Hidalgo, C.A., 

2020. Complex economic activities concentrate in large cities. Nature human behaviour. 

doi:10.1038/s41562-019-0803-3. 

Balland, P.-A., Rigby, D., 2016. The Geography of Complex Knowledge. Economic 

Geography 93 (1), 1–23. doi:10.1080/00130095.2016.1205947. 

Beaudry, C., Schiffauerova, A., 2009. Who's right, Marshall or Jacobs?: The localization versus 

urbanization debate. Research Policy 38 (2), 318–337. doi:10.1016/j.respol.2008.11.010. 

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of 

communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 

2008 (10), P10008. doi:10.1088/1742-5468/2008/10/P10008. 

Boschma, R., 2005. Proximity and Innovation: A Critical Assessment. Regional Studies 39 (1), 

61–74. doi:10.1080/0034340052000320887. 

Boschma, R., 2016. Relatedness as driver of regional diversification: A research agenda. 

Regional Studies 51 (3), 351–364. doi:10.1080/00343404.2016.1254767. 

Broekel, T., 2019. Using structural diversity to measure the complexity of technologies. PloS 

one 14 (5), e0216856. doi:10.1371/journal.pone.0216856. 

Broekel, T., Boschma, R., 2012. Knowledge networks in the Dutch aviation industry: The 

proximity paradox. Journal of Economic Geography 12 (2), 409–433. 

doi:10.1093/jeg/lbr010. 



32 
 

Broekel, T., Brenner, T., 2007. Measuring Regional Innovativeness. A Methodological 

Discussion and an Application to One German Industry. Max Planck Institute of 

Economics, Jena, Germany. 

Burt, R.S., 1987. Social Contagion and Innovation: Cohesion versus Structural Equivalence. 

American Journal of Sociology 92 (6), 1287–1335. doi:10.1086/228667. 

Burt, R.S., 2004. Structural Holes and Good Ideas. American Journal of Sociology 110 (2), 

349–399. doi:10.1086/421787. 

Cassi, L., Plunket, A., 2013. Research Collaboration in Co-inventor Networks: Combining 

Closure, Bridging and Proximities. Regional Studies 49 (6), 936–954. 

doi:10.1080/00343404.2013.816412. 

Cassi, L., Plunket, A., 2014. Proximity, network formation and inventive performance: In 

search of the proximity paradox. The Annals of Regional Science 53 (2), 395–422. 

doi:10.1007/s00168-014-0612-6. 

Castaldi, C., Frenken, K., Los, B., 2015. Related Variety, Unrelated Variety and Technological 

Breakthroughs: An analysis of US State-Level Patenting. Regional Studies 49 (5), 767–

781. doi:10.1080/00343404.2014.940305. 

Chatterjee, S., Price, B., 1995. Praxis der Regressionsanalyse. Oldenbourg Verlag, München. 

Cohen, W.M., Levinthal, D.A., 1990. Absorptive Capacity: A New Perspective on Learning 

and Innovation. Administrative Science Quarterly 35 (1), 128. doi:10.2307/2393553. 

Coleman, J.S., 1988. Social capital in the creation of human capital. American Journal of 

Sociology 94, 95–120. 

Cowan, R., Jonard, N., 2003. The dynamics of collective invention. Journal of Economic 

Behavior & Organization 52 (4), 513–532. doi:10.1016/S0167-2681(03)00091-X. 

Cowan, R., Jonard, N., 2004. Network structure and the diffusion of knowledge. Journal of 

Economic Dynamics and Control 28 (8), 1557–1575. doi:10.1016/j.jedc.2003.04.002. 

Cribari-Neto, F., Zeileis, A., 2010. Beta Regression in R. Journal of Statistical Software 34 (2). 

doi:10.18637/jss.v034.i02. 

Croissant, Y., Millo, G., 2008. Panel Data Econometrics in R: The plm Package. Journal of 

Statistical Software 27 (2). doi:10.18637/jss.v027.i02. 

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research. 

InterJournal, Complex Systems 1695 http://igraph.org). 

Dosi, G., 1982. Technological paradigms and technological trajectories. Research Policy 11 

(3), 147–162. doi:10.1016/0048-7333(82)90016-6. 

Erdös, P., Rényi, A., 1960. On the evolution of random graphs. Publications of the 

Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61. 

Eriksson, R.H., Lengyel, B., 2019. Co-worker Networks and Agglomeration Externalities. 

Economic Geography 95 (1), 65–89. doi:10.1080/00130095.2018.1498741. 

Feldman, M.P., Audretsch, D.B., 1999. Innovation in cities: Science-based diversity, 

specialization and localized competition. European Economic Review 43 (2), 409–429. 

doi:10.1016/S0014-2921(98)00047-6. 

Fleming, L., King, C., Juda, A.I., 2007a. Small Worlds and Regional Innovation. Organization 

Science 18 (6), 938–954. doi:10.1287/orsc.1070.0289. 

Fleming, L., Mingo, S., Chen, D., 2007b. Collaborative Brokerage, Generative Creativity, and 

Creative Success. Administrative Science Quarterly 52 (3), 443–475. 

doi:10.2189/asqu.52.3.443. 



33 
 

Florida, R., Adler, P., Mellander, C., 2017. The city as innovation machine. Regional Studies 

51 (1), 86–96. doi:10.1080/00343404.2016.1255324. 

Fontana, M., Iori, M., Montobbio, F., Sinatra, R., 2020. New and atypical combinations: An 

assessment of novelty and interdisciplinarity. Research Policy 49 (7), 104063. 

doi:10.1016/j.respol.2020.104063. 

Fornahl, D., Brenner, T., 2009. Geographic concentration of innovative activities in Germany. 

Structural Change and Economic Dynamics 20 (3), 163–182. 

doi:10.1016/j.strueco.2009.05.001. 

Fortunato, S., 2010. Community detection in graphs. Physics Reports 486 (3-5), 75–174. 

doi:10.1016/j.physrep.2009.11.002. 

Frenken, K., van Oort, F., Verburg, T., 2007. Related Variety, Unrelated Variety and Regional 

Economic Growth. Regional Studies 41 (5), 685–697. doi:10.1080/00343400601120296. 

Fritsch, M., Kudic, M., 2021. Micro dynamics and macro stability in inventor networks. The 

Journal of Technology Transfer 45 (3), 425. doi:10.1007/s10961-021-09851-8. 

Giuliani, E., 2013. Network dynamics in regional clusters: Evidence from Chile. Research 

Policy 42 (8), 1406–1419. doi:10.1016/j.respol.2013.04.002. 

Glaeser, E.L., Kallal, H.D., Scheinkman, J.A., Shleifer, A., 1992. Growth in Cities. Journal of 

Political Economy 100 (6), 1126–1152. doi:10.1086/261856. 

Glückler, J., 2007. Economic geography and the evolution of networks Johannes. Journal of 

Economic Geography 7 (5), 619–634. 

Hall, M., Tideman, N., 1967. Measures of Concentration. Journal of the American Statistical 

Association 62 (317), 162–168. 

Hidalgo, C.A., Hausmann, R., 2009. The building blocks of economic complexity. Proceedings 

of the National Academy of Sciences of the United States of America 106 (26), 10570–

10575. doi:10.1073/pnas.0900943106. 

Hidalgo, C.A., Klinger, B., Barabási, A.-L., Hausmann, R., 2007. The product space conditions 

the development of nations. Science (New York, N.Y.) 317 (5837), 482–487. 

doi:10.1126/science.1144581. 

Humphries, M.D., Gurney, K., 2008. Network 'small-world-ness': A quantitative method for 

determining canonical network equivalence. PloS one 3 (4), e0002051. 

doi:10.1371/journal.pone.0002051. 

Inkpen, A.C., 1996. Creating Knowledge through Collaboration. California Management 

Review 39 (1), 123–140. doi:10.2307/41165879. 

Jacobs, J., 1961. The death and life of great American cities. Random House, New York. 

Jaffe, A.B., 1986. Technological opportunity and spillovers of R&D: Evidence from firms’ 

patents, profits, and market value. American Economic Review 76 (5), 984–1001. 

Jaffe, A.M.T.H.R., 1993. Geographic Localization of Knowledge Spillovers as Evidenced by 

Patent Citations. Quarterly Journal of Economics 108 (3), 577–598. 

Janssen, M.J., Abbasiharofteh, M., 2022. Boundary spanning R&D collaboration: Key 

enabling technologies and missions as alleviators of proximity effects? Technological 

Forecasting and Social Change 180 (6460), 121689. doi:10.1016/j.techfore.2022.121689. 

Juhász, S., Lengyel, B., 2018. Creation and persistence of ties in cluster knowledge networks. 

Journal of Economic Geography 121, 1203–1226. 

Kabirigi, M., Abbasiharofteh, M., Sun, Z., Hermans, F., 2022. The importance of proximity 

dimensions in agricultural knowledge and innovation systems: The case of banana disease 



34 
 

management in Rwanda. Agricultural Systems 202 (3), 103465. 

doi:10.1016/j.agsy.2022.103465. 

Kemeny, T., Feldman, M., Ethridge, F., Zoller, T., 2016. The economic value of local social 

networks. Journal of Economic Geography 16 (5), 1101–1122. doi:10.1093/jeg/lbv043. 

Kemeny, T., Storper, M., 2015. Is Specialization Good for Regional Economic Development? 

Regional Studies 49 (6), 1003–1018. doi:10.1080/00343404.2014.899691. 

Kim, D., Cerigo, D.B., Jeong, H., Youn, H., 2016. Technological novelty profile and 

invention’s future impact. EPJ Data Science 5 (1), 721. doi:10.1140/epjds/s13688-016-

0069-1. 

Kogler, D.F., 2015. Intellectual property and patents: Knowledge creation and diffusion, in: 

Bryson, J., Clark, J., Vanchan, V. (Eds), Handbook of Manufacturing Industries in the 

World Economy. Edward Elgar Publishing, pp. 163–188. 

Krogh, G. von, Spaeth, S., Lakhani, K.R., 2003. Community, joining, and specialization in 

open source software innovation: A case study. Research Policy 32 (7), 1217–1241. 

doi:10.1016/S0048-7333(03)00050-7. 

Kuhn, T., 1962. The Structure of Scientific Revolutions. University of Chicago Press, Chicago. 

Le Gallo, J., Plunket, A., 2020. Regional gatekeepers, inventor networks and inventive 

performance: Spatial and organizational channels. Research Policy 49 (5), 103981. 

doi:10.1016/j.respol.2020.103981. 

Lorrain, F., White, H.C., 1971. Structural equivalence of individuals in social networks. The 

Journal of Mathematical Sociology 1 (1), 49–80. doi:10.1080/0022250X.1971.9989788. 

Lucena, D., 2017. Places: Structural Equivalence Analysis for Two-mode Networks R package 

v0.2.0. 

Mazzucato, M., 2018. Mission-oriented innovation policies: Challenges and opportunities. 

Industrial and Corporate Change 27 (5), 803–815. doi:10.1093/icc/dty034. 

Miguelez, E., Moreno, R., 2016. Relatedness, external linkages and regional innovation in 

Europe. Regional Studies 52 (5), 688–701. doi:10.1080/00343404.2017.1360478. 

Neal, Z., 2017. How small is it?: Comparing indices of small worldliness. Network Science 5 

(1), 30–44. doi:10.1017/nws.2017.5. 

Nelson, R.R., Winter, S., 1982. An Evolutionary Theory of Economic Change. Harvard 

University Press, Cambridge, MA. 

Ó Huallacháin, B., Lee, D.-S., 2010. Technological Specialization and Variety in Urban 

Invention. Regional Studies 45 (1), 67–88. doi:10.1080/00343404.2010.486783. 

Pizarro, N., 2007. Structural Identity and Equivalence of Individuals in Social Networks: 

Beyond Duality. International Sociology 22 (6), 767–792. 

doi:10.1177/0268580907082260. 

Powell, W.W., Koput, K.W., Smith-Doerr, L., 1996. Interorganizational Collaboration and the 

Locus of Innovation: Networks of Learning in Biotechnology. Administrative Science 

Quarterly 41 (1), 116–145. doi:10.2307/2393988. 

Rigby, D.L., Roesler, C., Kogler, D.F., Boschma, R., Balland, P.-A., 2022. Do EU regions 

benefit from Smart Specialisation principles? Regional Studies. 

10.1080/00343404.2022.2032628 

Scholl, T., Brenner, T., 2014. Detecting Spatial Clustering Using a Firm-Level Cluster Index. 

Regional Studies 50 (6), 1054–1068. doi:10.1080/00343404.2014.958456. 

Schumpeter, J.A., 1911. Theorie der wirtschaftlichen Entwicklung (Theory of economic 

development). Duncker und Humblot, Berlin. 



35 
 

Simensen, E.O., Abbasiharofteh, M., 2022. Sectoral patterns of collaborative tie formation: 

investigating geographic, cognitive, and technological dimensions. Industrial and 

Corporate Change 00, 1–36. doi:10.1093/icc/dtac021. 

Sorenson, O., Rivkin, J.W., Fleming, L., 2006. Complexity, networks and knowledge flow. 

Research Policy 35 (7), 994–1017. doi:10.1016/j.respol.2006.05.002. 

Stefano, D. de, Zaccarin, S., 2013. Modelling Multiple Interactions in Science and Technology 

Networks. Industry & Innovation 20 (3), 221–240. doi:10.1080/13662716.2013.791130. 

Strumsky, D., Lobo, J., 2015. Identifying the sources of technological novelty in the process 

of invention. Research Policy 44 (8), 1445–1461. doi:10.1016/j.respol.2015.05.008. 

Stuart, T.E., Podolny, J.M., 1996. Local search and the evolution of technological capabilities. 

Strategic Management Journal 17 (S1), 21–38. doi:10.1002/smj.4250171004. 

Tóth, G., Juhász, S., Elekes, Z., Lengyel, B., 2021. Repeated collaboration of inventors across 

European regions. European Planning Studies (2), 1–21. 

doi:10.1080/09654313.2021.1914555. 

Tóth, G., Lengyel, B., 2021. Inter-firm inventor mobility and the role of co-inventor networks 

in producing high-impact innovation. The Journal of Technology Transfer 72 (1), 1. 

doi:10.1007/s10961-019-09758-5. 

Uzzi, B., Mukherjee, S., Stringer, M., Jones, B., 2013. Atypical combinations and scientific 

impact. Science 342 (6157), 468–472. doi:10.1126/science.1240474. 

Uzzi, B., Spiro, J., 2005. Collaboration and Creativity: The Small World Problem. American 

Journal of Sociology 111 (2), 447–504. 

van der Wouden, F., 2018. Exploring the Changing Structures of Inventor Collaboration in 

U.S. Cities between 1836 and 1975. PhD thesis. UCLA, Los Angeles. 

van der Wouden, F., Rigby, D.L., 2019. Co-inventor networks and knowledge production in 

specialized and diversified cities. Papers in Regional Science 98 (4), 1833–1853. 

doi:10.1111/pirs.12432. 

Wang, J., 2016. Knowledge creation in collaboration networks: Effects of tie configuration. 

Research Policy 45 (1), 68–80. doi:10.1016/j.respol.2015.09.003. 

Wang, J., Veugelers, R., Stephan, P., 2017. Bias against novelty in science: A cautionary tale 

for users of bibliometric indicators. Research Policy 46 (8), 1416–1436. 

doi:10.1016/j.respol.2017.06.006. 

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of 'small-world' networks. Nature 393 

(6684), 440–442. doi:10.1038/30918. 

Weitzman, M.L., 1998. Recombinant Growth. The Quarterly Journal of Economics 113 (2), 

331–360. doi:10.1162/003355398555595. 

White, H., 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct 

Test for Heteroskedasticity. Econometrica 48 (4), 817. doi:10.2307/1912934. 

Wuchty, S., Jones, B.F., Uzzi, B., 2007. The increasing dominance of teams in production of 

knowledge. Science 316 (5827), 1036–1039. doi:10.1126/science.1136099. 

Yang, Z., Algesheimer, R., Tessone, C.J., 2016. A Comparative Analysis of Community 

Detection Algorithms on Artificial Networks. Scientific reports 6, 30750. 

doi:10.1038/srep30750. 

Zeileis, A., 2004. Econometric Computing with HC and HAC Covariance Matrix Estimators. 

Journal of Statistical Software 11 (10). doi:10.18637/jss.v011.i10. 

Zeileis, A., Hothorn, T., 2002. Diagnostic Checking in Regression Relationships. R News 2 

(3), 7–10 



36 
 

 

 

 

Figure 1. The projected co-inventor network (left) and the co-inventor network of places 

(right). 
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Figure 2. The projected co-inventor network (left) and the co-inventor network of places 

(right).  

Note: Each dot represents the structural properties of a NUTS2 region in one of the seven 

defined time-windows.  
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Figure 3. The kernel density of z-scores for the combination of each technology pair.  
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Figure 4. The share of atypical patents between 1984 and 2014 (left) and the distribution of the 

number of atypical patents across seven time-windows (right). 
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Figure 5. The distribution of typical and atypical patents (1980-2014) across Cooperative 

Patent Classifications (CPC) schemes. 
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Figure 6. The number of detected communities in log (left) and the distribution of community 

numbers across seven time-windows. 

Note: The number corresponds to the median value of community numbers across seven time-

windows between 1980-2014. The legend is in logarithmic scale.  
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Figure 7. An approximation of the density of the variable SIMILARITY (kernel density 

estimation) over time. 
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Figure 8. Visual representations of detected communities, inter-community ties, and three 

variables of interests.  

Note: Regions’ networks of places normally include various components. For the sake of 

illustration, only one large component is shown in this visualization. 
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