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EAGE Introduction

> Mature assets production issues 2 :
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» e.g. liquid loading, scaling
» Reliable prediction of production rates
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» Availability of more and more data
» Development of cost effective sensors
> Mature asset = Lots of historical data in different formats

» Clear need for predictive models to improve operation
» Accurate and robust
» Computationally efficient
» Requires less manual calibration and tuning




EAGE

» Employing forward model for forecast
» Physics-based model
» Data-driven
» Uncertainties and errors inherent in
» Measurements; irreducible
» Models (parameters); reducible
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EAGE Objective

» Goal: Workflow development for production forecast updated with measurements
» Cheap, robust and reliable production forecast model
» Requires less manual calibration

» Most importantly to answer the question: Can this method help in improving forecasts from the
forward models?

» KPI for workflow effectiveness
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Methodology — Ensemble Kalman Filter

Initial
Siate Prediction
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» The EnKF algorithm is essentially a predictor-corrector method. The prediction model in the figure is f.
» The algorithm first starts to predict the state of the system, given assumed values of the model parameters

(i.e. the prior state).
> When at the same timestep of the prediction are available, a correction is made (weighted least squares).
We then have the posterior state, which we use for the predictions in the next timestep.




Forward model — Stacked LSTMs

» Stacked LSTM as the forward model, with the following parameters
» Production rate; Q

e e » Tubing head pressure, Well head temperature; 6,
gaussian_noise_1 (GaussianMo (Mone, 36, &) [} .
lstm_ 1 (LSTM) (None, 38, 5) 248 } ChOke Openlng’ U
lstm_2 (LSTM) (None, 38, 5) 218 } M d I : h d b W
odel weight an las parameter, W,
Istm_3 (LSTM) (None, 36, 5) 228
lstm_4 (LSTM) (None, 38, 5) 228 Qn,n—l,...,n—35
lstm 5 (LSTM) (None, 38, 5) 228 _ en,n—l,...,n—35
lstm 6 (LSTM) {None, 5) 220 Qn+1 - fD—LSTM U
lu_1 (PReLU) n 5) 5 n+1n,..,n—34
p_re_lu_ e one,
14
dense_1 (Dense) (Mone, 5) 38
dense_2 (Dense) (Mone, 1) 6

» The state space representation of the system is then given by

Total params: 1,381
Trainable params: 1,381
Non-trainable params: @

Qn+1

fo—1stm (@, 05, Up11) + VVn)

Xn+1 = <Wn+1> = f(xn, Upy1) = ( w,




EAGE Dataset

» Figure shows the entire production dataset for two mature wells in the North Sea from 2009 to mid

2013.
» Dataset contains the Production rate, Tubing head pressures, Well head temperatures, and Choke

settings for the period.
» Can clearly see a decline in production rates due to salt formation for smaller time scales.
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EAGE Uncertainties in dataset

» Add noise to the inputs scaled using the typical sensor Normalized Variable Scaled Standard deviation

sensitivities for each input variables. Flow rate 0.003
Tubing Head Pressure Sensor 1 0.01
Tubing Head Pressure Sensor 2 0.01
Tubing Head Pressure Sensor 3 0.01

» Determine the distribution of the forecasts using Monte Carlo.
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- - - : 3 0—
This provides the baseline case. Choke settings (valve opening) 0 (Assumed perfect)
Inputs for predicting the flow rate on 2012-07-21 00:00:00 Distributions for the predicted and measured flowrates on 2012-07-21 00:00:00 Baseline model predictions, KL-div=36.22

0.1 —e— Well Head Temperature B Measured flow rate

— 0.4
1.3 —=a— Tubing head pressure M Predicted flow rate 8
R ———— L P R L =
—a— Choke settings E
0.5 0.06 £ 0.3
0 = d |
o]
[ m 0.2
» ju.
0.8 =
0.3 075 .,2 —— Predicted Flow
0.295 mﬂ"\w e S o S et 1 g 0.1 —e— Measured Flow
0.7 o
0.29 0.65 8
o LT T T T T O T TR O T T T
2g. 2. EN 0p. ls. 2. 2. 0. 0.29 0.3 0.31 0.32 0.33 0.34 0
jU/'O() “Op % 4, , ',00 I, ',00 “Op “Op E» O
<0, RAN %, ?,e Jul 15 Jul 18 Jul 21 Jul 24 Jul 27
07, 0y, 0y, 07,

2012
Date




EAGE Overview of cases

» Workflow was tested on two cases
» Mature gas asset in North Sea, suffering from salt precipitation

» Case I.
» Training the forward model on Well A
» Forecasting the production of Well A

» Case Il.
» Training the forward model on Well A
» Forecasting the production of Well B




EAGE

Case I: Train Well A, Test Well A

» The training is performed on Well A dataset from 2009 to 2011
» Testing is performed on Well A in the period of Jul 13 - 27, 2012
» Initial model parameters (bias) uncertainties estimated in the training
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EAGE Results: Case |

» Prediction results show that local bias errors are corrected.
» Better Kullback-Liebler divergence compared with baseline model.

== No EnKF Normalized flowrate profiles (Well A)
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EAGE Case ll: Train Well A, Test Well B

Reuse the model trained from dataset of Well A
» Avoid (sometimes computationally expensive) retraining of forward model

~

~

Test dataset (same period) on Well B data

Flow rate for Well B

Model losses (on Well A, 2009 to 2011)

—&— Training Loss
Validation Loss

Flow rate

Mean Absolute Error

Jul 15 Jul 18 Jul 21 Jul 24 Jul 27
2012

Epochs Date

0 200 400 600 800 1000




EAGE Results: Case Il (1/2)

» Figure shows localized bias errors have been corrected. Moreover, uncertainties with the forecasts are also
reduced.
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EAGE Results: Case Il (2/2)

» Test also on a separate test period (March 10-24 2012) for Well B dataset.
» In the mean sense, the forecasts have been improved. Shows clearly that once the filter has settled,
uncertainties are still relatively high. KL-divergence potentially can indicate need for retraining.
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EAGE Results: Case I-Il (Timings)

» Training performed on GTX1080 gpu, approximately ~ 5 hr

» For performance testing, the model was deployed in a laptop with core i7-4810MQ with 16 GB ram.

» Each timestep takes about 3 seconds (including data assimilation). Which means that the algorithm can be

deployed in a real-time production optimization framework.

Execution time at each timestep

3.4

Processor: Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz 2.80 GHz
Installed memory (RAM): 16.0 GB

3.2

System type: 64-bit Operating System, x64-based processor

Execution time (s)

2.8

2.6 .
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EAGE Conclusions

» Cheap and accurate models for production predictions, including the uncertainties in data

» Reduce the prediction uncertainties by incorporating new measurements/observations

» No retraining required, as long as the production trends are similar

» Generic workflow which could also be used as an operation support system (KPI, alarms,...)




EAGE Way forward

» Implementing the workflow in real-time (robust auto-tuned live forecast)

» Apply methodology to predict performance of other components in the production

» Compressor, turbine performance degradation prediction
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