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Introduction
Mature assets production issues

e.g. liquid loading, scaling

Reliable prediction of production rates

Availability of more and more data

Development of cost effective sensors

Mature asset = Lots of historical data in different formats 

Clear need for predictive models to improve operation

Accurate and robust

Computationally efficient

Requires less manual calibration and tuning
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Uncertainties and Forecasts
Employing forward model for forecast

Physics-based model

Data-driven

Uncertainties and errors inherent in

Measurements; irreducible

Models (parameters); reducible



Objective
Goal: Workflow development for production forecast updated with measurements 

Cheap, robust and reliable production forecast model

Requires less manual calibration 

Most importantly to answer the question: Can this method help in improving forecasts from the 

forward models?

KPI for workflow effectiveness
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Methodology – Ensemble Kalman Filter

The EnKF algorithm is essentially a predictor-corrector method. The prediction model in the figure is f.

The algorithm first starts to predict the state of the system, given assumed values of the model parameters 

(i.e. the prior state).

When data at the same timestep of the prediction are available, a correction is made (weighted least squares). 

We then have the posterior state, which we use for the predictions in the next timestep.



Forward model – Stacked LSTMs

Stacked LSTM as the forward model, with the following parameters

Production rate; Q 

Tubing head pressure, Well head temperature; θ, 

Choke opening; U 

Model weight and bias parameter, W, 

The state space representation of the system is then given by
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Dataset
Figure shows the entire production dataset for two mature wells in the North Sea from 2009 to mid 

2013.

Dataset contains the Production rate, Tubing head pressures, Well head temperatures, and Choke 

settings for the period.

Can clearly see a decline in production rates due to salt formation for smaller time scales.

HTMLs/dataset_all.html


Uncertainties in dataset

Add noise to the inputs scaled using the typical sensor 

sensitivities for each input variables.

Determine the distribution of the forecasts using Monte Carlo. 

This provides the baseline case.



Overview of cases

Workflow was tested on two cases 

Mature gas asset in North Sea, suffering from salt precipitation

Case I. 

Training the forward model on Well A

Forecasting the production of Well A

Case II.

Training the forward model on Well A

Forecasting the production of Well B



The training is performed on Well A dataset from 2009 to 2011

Testing is performed on Well A in the period of Jul 13 - 27, 2012

Initial model parameters (bias) uncertainties estimated in the training 

phase

Case I: Train Well A, Test Well A



Results: Case I

Prediction results show that local bias errors are corrected. 

Better Kullback-Liebler divergence compared with baseline model.



Case II: Train Well A, Test Well B

Reuse the model trained from dataset of Well A

Avoid (sometimes computationally expensive) retraining of forward model

Test dataset (same period) on Well B data



Results: Case II (1/2)

Figure shows localized bias errors have been corrected. Moreover, uncertainties with the forecasts are also 

reduced.



Results: Case II (2/2)

Test also on a separate test period (March 10-24 2012) for Well B dataset.

In the mean sense, the forecasts have been improved. Shows clearly that once the filter has settled, 

uncertainties are still relatively high. KL-divergence potentially can indicate need for retraining.



Results: Case I-II (Timings)

Training performed on GTX1080 gpu, approximately ~ 5 hr

For performance testing, the model was deployed in a laptop with core i7-4810MQ with 16 GB ram.

Each timestep takes about 3 seconds (including data assimilation). Which means that the algorithm can be 

deployed in a real-time production optimization framework.



Conclusions

Cheap and accurate models for production predictions, including the uncertainties in data

Reduce the prediction uncertainties by incorporating new measurements/observations

No retraining required, as long as the production trends are similar

Generic workflow which could also be used as an operation support system (KPI, alarms,…)



Way forward

Implementing the workflow in real-time (robust auto-tuned live forecast)

Apply methodology to predict performance of other components in the production

Compressor, turbine performance degradation prediction
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