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Theme 

 Study the advantages the deep learning brings 

 Use machine deep learning technique called Deep Feed-

forward Neural Network (DFNN) to predict reservoir properties  

 Compare deep learning versus other methods 

 Predict and validate estimates of Porosity, Volume of Vshale, 

Water Saturation 

 The final goal is to derive the volume of net pay 



Outline 

 Introduction of Deep Neural Networks 

 Results using North Sea Study 

 Training, Validation and Parameter Control 

 Summary 
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Traditional Reservoir Characterization Approach 

 Precondition the seismic data for AVO  

 Focus on reducing  errors from spectral differences, 

residual move out and relative phase differences 

 Apply traditional AVO and inversion techniques to 

the seismic data, thus produce a number of seismic 

attributes 

 Derive elastic properties and lithology fluid facies 

 Here we will take it a step further by deriving the 

actual reservoir properties 

 



Study  

 Three machine learning techniques were tried and compared: 

– Multi-Linear Regression (MLR),  

– Probabilistic Neural Network (PNN), 

– Deep Feed-forward Neural Network (DFNN) 

 It is done in the North Sea, covering two producing fields with 

commercial volumes of oil  

 Both fields have reservoir interval within the Paleocene:  

– Field A is a deep marine channelized submarine fan system  

– Field B is in a remobilized injectite sand, cross cutting a 

range of stratigraphy at very steep angles 

 A number of wells with suitable wireline logs are available in 

and around the discoveries. We used only six wells in the same 

block, since they provided good well-to-seismic ties 

 



Net-Pay Prediction Workflow 

Multi-linear Regression  

Neural Networks 

Time Structure 

Most probable Rs (chi 70) Likelihood ratio 

AVO Anomaly (chi18) Mu-Rho Lambda-Rho 

Well Curves 

Amplitude Env. (ultra far) 

Integrate (ultra far) 

Filter 5/10-15/20  

(S-impedance) 

Filter 25/30-35/40  

(AVO Anomaly) 



 
Multi-linear Regression and Neural Networks 
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 Multi-linear regression predicts the target by 

finding a linear relationship between the log 

and attributes 

 With neural networks we derive a non-linear 

relationship that links the target with the 

given attributes 

 Multi-feed Forward Networks and 

Probabilistic Neural networks are the most 

commonly used networks 

 The weights in neural networks are derived 

by solving a large nonlinear inverse problem 

by minimizing some objective function such 

as the mean squared error between the 

actual training values and the predicted 

training values 
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Deep Neural Networks 
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Deep Feed-forward Neural Network (DFNN) is 

a form of supervised learning: 

 The supervised learning is the task of 

inferring a function from labeled training data  

 The learning algorithm then generalizes from 

the training data to unseen situations. The 

resulting model is statistical. 

 A multi-layer neural network is considered 

deep if it has 2 or more hidden layers.  As 

the number of hidden layers increase, a 

deep forward network can model more 

complexity 

 The more training data you have, the greater 

number of hidden layers can be used 

 

 

 



Porosity Prediction 
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a) MLR 

b) PNN 

c) DFNN 

d) MLR 

e) PNN 

f) DFNN 

Left: Field A Right: Field B 

DFNN provides: 

 Better lateral 

continuity in the 

thin reservoir of 

field A 

 Good 

estimation of 

the injectite 

sand properties 

in field B 

 



Training and Validation Statistics at the well locations 
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  Training Validation 
  MLR PNN DFNN MLR PNN DFNN 

  Corr Avg. Error Corr Avg. Error Corr Avg. Error Corr Avg. Error Corr Avg. Error Corr Avg. Error 

VSH 0.929 0.089 0.968 0.0599 0.944 0.081 0.884 0.135 0.723 0.204 0.916 0.091 

PHIT 0.692 0.028 0.822 0.023 0.864 0.019 0.593 0.32 0.5 0.036 0.703 0.03 

SW 0.974 0.043 0.999 0.009 0.994 0.021 0.806 0.171 0.628 0.196 0.883 0.087 

CORR  RMSE CORR  RMSE CORR  RMSE CORR  RMSE CORR  RMSE CORR  RMSE 

MLR PNN DFNN MLR PNN DFNN 

TRAINING VALIDATION 

Training and Validation Statistics 

VSH PHIT SW

 MLR predicts correct 

variations at the well 

locations but not 

correct magnitude  

 PNN drops 

significantly from 

training to validation  

 DFNN shows the 

highest correlation 

value and lowest 

validation RMS error 

(RMSE) 

 DFNN gives consistent 

statistics from training 

to validation 



Water Saturation Prediction  (field A)   Quantitative prediction of water 

saturation is often ambiguous 

because of its independent 

nonlinear relationship with 

conventional seismic attributes 

and inversion  

 Non-linear neural networks are 

good at solving this ambiguity 

11 

a) MLR 

b) PNN 

c) DFNN 

Discovery well used in training (left)  Blind well test (right) 

Likelihood ratio 



Water Saturation Prediction  (field B)  
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 Notice the continuity 

and clear depiction of 

the injectites 

a) MLR b) PNN 

c) DFNN 



DFNN Training and Validation  

 Like all supervised learning problems, 
training the DFNN balances a tradeoff 
between the conflicting desire to maximize 
the ability to predict the known training 
values, while minimizing the tendency to 
“over train” or learn spurious noise from the 
training examples   

 The condition of over training is usually 
evaluated using separate validation data  

 To ensure that the network is not 
overtraining we validated the derived 
DFNN operator using the percentage 
based validation, around 25-30% of training 
data samples were used for validation 
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DFNN Vshale Quality Control  
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 The data is randomly split into training 

and validation datasets 

 The total number of iterations or steps is 

used for either the Conjugate Gradient 

or Steepest Descent algorithm  

 By plotting the training and validation 

error as a function of iteration it is 

possible to determine the optimal 

number of iterations 

– # of iterations serves as a 

regularization parameter 

 Correlation coefficient 

– iterations=30 

– 0.94 training 

– 0.88 validation 

  

Actual 

Predicted 

# of iterations 

Error 



DFNN Parameter Control 
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 DFNN offers significant advantages in terms 

of control of training parameters and speed of 

application. 

 Each of the parameters shown on the left 

affects the accuracy of prediction 

 Number of hidden layers 

 Number of nodes in hidden layers is 

defined by the number of attributes supplied 

into the network 

 Minimization option: the Conjugate 

Gradient (CG) and Steepest Descent (SD) 

algorithm: 

    CG is robust method, easy to parameterize 

    SD better result but difficult to parameterize 



Net-Pay Derivation Summary using DFNN 
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a)  b)  
c)  

d)  

Pay 

(Samples) 

a) shale b) water  

saturation 

c) porosity d) Net-Pay 

 From Vshale, Water 

Saturation and Total 

Porosity volumes, we 

estimated the net pay 

volume 



Net-Pay estimation (field A) 
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a) MLR b) PNN 

c) DFNN 

 MLR is under 

estimating the 

reservoir 

 PNN is over-

predicting, especially 

away from the well 

control 

 DFNN shows the best 

results, as was 

confirmed 

quantitatively by 

correlation and 

validation shown 

earlier 

 

𝑁𝑒𝑡𝑃𝑎𝑦 = 
𝑖𝑓 (𝑃𝐻𝐼𝑇 > 10%  

𝑎𝑛𝑑  
𝑆𝑊 < 50% 

 𝑎𝑛𝑑  
𝑉𝑆𝐻 < 50%) 

 



Net-Pay estimation (field B) 
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a) MLR b) PNN 

c) DFNN 
 Previous validations 

showed that MLR is under 

estimating the reservoir and 

PNN is less stable, noisier 

 



Summary: why Deep Learning is better?  

 DFNN is at show great promise as a methodology to quantitatively estimate the 

reservoir. 

 It provides better lateral continuality of predictions and is more accurate away from 

the well control which was confirmed by blind well validation 

 The study also showed that by limiting the complexity of the network to three hidden 

layers and using early stopping the DFNN achieved better results than other 

techniques. 

 The challenge in adopting DFNNs in the geoscience is the relative scarcity of labeled 

training data (limited well control). 

 Currently, we are researching theory-based data science methodologies including 

training neural networks with synthetic data.    
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Questions 
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