## Turfgrass species tolerance to soil salinity

| Sensitive<br>(< 3 dS m <sup>-1</sup> ) | Moderately<br>sensitive<br>(3-6 dS m <sup>-1</sup> ) | Moderately<br>tolerant<br>(6-10 dS m <sup>-1</sup> ) | Tolerant<br>(> 10 dS m <sup>-1</sup> ) |
|----------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------|
| Annual<br>bluegrass                    | Annual<br>ryegrass                                   | Perennial<br>ryegrass                                | Saltgrass                              |
| Colonial bentgrass                     | Creeping<br>bentgrass                                | Tall fescue                                          | Alkaligrass                            |
| Kentucky<br>bluegrass                  | Fine-leaf<br>fescues                                 | Zoysiagrass                                          | Bermudagrass                           |
| Rough<br>bluegrass                     | Buffalograss                                         |                                                      | Seashore<br>Paspalum                   |
|                                        |                                                      |                                                      | St. Augustine                          |

M. A. Harivandi, J. D. Butler, and L. Wu. 1992. Salinity and turfgrass culture. In D. V. Waddington, R. N. Carrow, and R. C. Shearman (eds.) Turfgrass, pp.207–229. Series No. 32. Madison: American Society of Agronomy.

#### Leaching requirements LR = Ecw / (5ECe – Ecw)

- ECw = electrical conductivity of irrigation water
- ECe = soil salinity threshold
- Higher EC means more water needs to be applied to leach salts through profile



# BMP's For Water Conservation

The Soil System

- Weak grasses and compacted soils will not support this regime.
- Organic matter management is also crucial
- Drainage and increased cultivation may be necessary.









### Maintenance







#### Maintenance



Leveling irrigation heads can improve distribution uniformity by 20%



# Background

- PVCC was exceeding their water allotment by 40 AF/ yr. due to an older, inefficient irrigation system (62% uniformity.) Facing fines.
  - *1 acre foot = approx. 1,230,000 liters*
- Set a goal of reducing water use by 76 AF/ yr.
- Collaboration of irrigation designer, manufacturer, university and club.
- Goal: design and install the most efficient irrigation system possible and guarantee performance of at least 80% uniformity.



# System design:

- Careful engineering of head layout for optimal spacing.
- Survey grade mapping instruments for sub-centimeter accuracy.
- Triangulation system to protect true location of each sprinkler.
- Audits during and after installation.





# **Results:**

- The efficiency of the new system resulted in saving 79 AF (approx. 100,000,000 liters), exceeding the goal of 76 AF.
- Turf quality and uniformity improved.
- Club has confidence in the design and operation of the system. No longer facing fines.





| Sprinkler Name                  |                  |           |               | Base Pressur   | e (PSI) | 100.0         |
|---------------------------------|------------------|-----------|---------------|----------------|---------|---------------|
| Sprinkler Model                 |                  | J         |               | Riser Height ( | IN)     | 0.0           |
| Nozzle Size                     | Brown x Red & Te | al        |               | Set Screw Set  | tting   |               |
| Flow Rate (GPM)                 | 22.90            |           | Degree of Arc |                | 360     |               |
| Date/Time of Test               | 12/21/15 14:52   |           | Mins./Revolut | ion            | 3.20    |               |
| Testing Facility                | C. I. T.         |           | Record Numb   | er             |         |               |
| Comment Nozzle pressure: 50 psi |                  |           |               |                |         |               |
|                                 |                  |           |               |                |         |               |
| Distr. Uniformity               | 86% Mi           | (In/Hr)   | 0.592         |                |         | Spacing       |
| CU (Christiansen)               | 91% Ma           | an(In/Hr) | 0.787 0.707   | 7 (Theor.)     |         | Equilateral   |
| Sched Coeff (3%)                | 1.2 Ma           | x (in/Hr) | 1.395         |                |         | 60.0' x 52.0' |
|                                 |                  |           |               |                |         |               |
|                                 |                  |           |               |                |         |               |

| Sprinkler Name    |                                                            | Base Pressure (PSI) | 100.0 |
|-------------------|------------------------------------------------------------|---------------------|-------|
| Sprinkler Model   |                                                            | Riser Height (IN)   | 0.0   |
| Nozzle Size       | Brown x Teal & Teal                                        | Set Screw Setting   |       |
| Flow Rate (GPM)   | 25.30                                                      | Degree of Arc       | 180   |
| Date/Time of Test | 12/22/15 09:37                                             | Mins./Revolution    | 4.00  |
| Testing Facility  | C. I. T.                                                   | Record Number       |       |
| Comment           | Nozzle pressure: 50 psi                                    |                     |       |
| Comment           | Arc, mins/rev., and appl. rate modified to assume 180° arc |                     |       |

| Distr. Uniformity | 78% | Min (In/Hr) | 1.005              | Spacing       |
|-------------------|-----|-------------|--------------------|---------------|
| CU (Christiansen) | 86% | Man(In/Hr)  | 1.528 N/A (Theor.) | Equilateral   |
| Sched Coeff (3%)  | 1.3 | Max (In/Hr) | 2.107              | 60.0' x 52.0' |

## **BMP's for Water Conservation**

**Reducing Irrigated Acreage** 

- Eliminating nonessential areas
  - Practice range
  - Rough adjacent to tees
- Installing no-mow areas



Non-irrigated driving range at Laurel Creek



# Turf removal

- Save water, not labor
- Weed control challenging
- Local water dept. may subsidize turf removal





#### **Camelback GC**

- 220 down to 80 turf acres following redesign
- The course has saved 132 acre-ft of water per year (roughly 43 million gallons)
- Native areas received 13 inches of irrigation in 2014 (in a year with above average rainfall)
- This comprises approximately 1/5 the water needed to yield quality turf for golf

Native grasses receive 13-16 inches of irrigation per year. The turf is irrigated with 5 feet of water per year.

| Table 1. Native "Short" mix up to 3 feet tall |                                 |  |
|-----------------------------------------------|---------------------------------|--|
| Common Name                                   | Genus and species               |  |
| Purple three-awn                              | Aristida purpurea var. purpurea |  |
| Sideoats grama                                | Bouteloua curtipendula          |  |
| Blue grama                                    | Bouteloua gracilis              |  |
| Sand dropseed                                 | (Sporobolus cryptandrus         |  |
| Alkali sacaton                                | Sporobolus airoides             |  |
| Indian ricegrass                              | Achnatherum hymenoides          |  |
| Galleta grass                                 | ,<br>Pleuraphis jamesij         |  |
| Sand sage                                     | Artemisia filifolia             |  |
| Triangle-leaf hursage                         | Ambrosia deltoidea              |  |
| Brittlebush                                   | Encelia farinose                |  |

#### Portable moisture meter







11:39 AM 78 park city Greens 29.20% 35.10% 29.20% 30.60% 36.00% 36.50% day 1 6/7/2016 10:54:5... C

#### Spectrum TDR 300<sup>®</sup> Moisture Meter

### Supplementing potable water

- Wells (bore holes) and water storage
- Bel-Air CC well development & tank storage
  - Low-yield well (20 GPM)
  - Inadequate storage





RULES HANDICAPPING

SERVING THE GAME



Well water is stored in large tanks and pumped into the irrigation system. Using well water decreases the golf course's reliance on expensive potable water.

# Questions?

Paul Jacobs

- Cell: 734-642-5927
- Email: <u>Pjacobs@usga.org</u>
- Twitter: @Pauls\_twiter