

NEA characteristics based on the results of astrometric and photometric observations with the SBG telescope at the Kourovka Astronomical Observatory

Eduard Kuznetsov, Dmitry Glamazda, Galina Kaiser, Alexhander Perminov, Andrey Shagabutdinov and Yulia Wiebe Ural Federal University, Institute of Natural Sciences and Mathematics, Kourovka Astronomical Observatory Lenina Avenue, 51, Yekaterinburg, Russia, 620000, <u>eduard.kuznetsov@urfu.ru</u>

SBG telescope

Regular astrometric and photometric observations of NEAs are conducted using a SBG telescope (see Fig. 1) of the Kourovka Astronomical Observatory of the Ural Federal University (AO UrFU).

NEA	P [hour]	P [hour] (http://alcdef.org/)	V–R [mag]	V–R [mag] (http://alcdef.org/)
(2061) Anza	11.62 ± 0.31	6.7121 ± 0.0041 or 11.4607 ± 0.0005		
(2102) Tantalus	2.5 ± 1.2	2.3839 ± 0.0010	0.46 ± 0.10	
(3200) Phaethon	3.6250 ± 0.0007	3.5971 ± 0.0019	0.35 ± 0.14	0.33 ± 0.01
(52768) 1998 OR2	4.11 ± 0.11	4.1100 ± 0.0036	0.38 ± 0.06	
(65690) 1991 DG	7.10 ± 0.98	7.1112 ± 0.0007	0.35 ± 0.14	0.40 ± 0.01
(68216) 2001 CV26	2.235 ± 0.088	2.4290	—	
(152931) 2000 EA107	4.03 ± 0.29	4.1366 ± 0.0002	—	
(153201) 2000 WO107	5.64 ± 0.14	5.64 ± 0.14		
(155140) 2005 UD			0.38 ± 0.05	0.35 ± 0.02
(163373) 2002 PZ39			0.43 ± 0.14	
(388945) 2008 TZ3			0.41 ± 0.10	0.39 ± 0.02
(523788) 2015 FP118	3.07 ± 0.72	3.0917 ± 0.0007		

Figure 1. The SBG telescope of the Kourovka Astronomical Observatory of the Ural Federal University

The SBG telescope facilities are:

- The four-axis telescope with a **0.8 m focal length** is equipped with a **Schmidt optical system** and a **0.4 m diameter main mirror**.
- An **Apogee Alta U32 CCD camera** with a KAF-3200ME-1 CCD matrix containing 2184 \times 1472 elements, each of size 6.8 \times 6.8 μ m is mounted at the main telescope focus.
- The scale of the CCD image is **1.8 arcsec/pixel**.
- The field of view of the system is **65 × 44 arcmin**.
- Limiting magnitude is **19 mag**.
- Observations with filters of the wideband **UBVRI** system are available.

The precision timing system uses a 12-channel GPS receiver Acutime 2000 GPS Smart Antenna.

The accuracy of observations

Astrometric and photometric observations of asteroids have been made with the filter R.

- The accuracy of astrometric observations is analyzed in papers (Kaiser & Wiebe 2017) and (Kuznetsov et al. 2017).
- The astrometry root-mean-square (RMS) residuals (O-C) for equatorial coordinates consist of 0.01-0.3 arcsec for bright objects when the magnitude is less than 18.5 mag, and 0.5-0.7 arcsec for faint objects with magnitude from 18.5 to 19 mag.
- The RMS residuals (O-C) for equatorial coordinates is increased for the near Earth objects (NEO) and potentially hazardous asteroids (PHA).
- In case of the angular velocity of NEO is less than 0.5 arcsec/min, the astrometry RMS residuals (O-C) comprised of 0.1-0.5 arcsec for bright NEO when the magnitude is less than 16.5 mag, and 0.9-1.0 arcsec for faint objects with magnitude from 16.5 to 18 mag.
- The astrometry RMS residuals (O-C) consist of 0.5-0.6 arcsec for NEO with magnitude from 9.5 to 11.5 mag and angular velocity from 20 to 40 arcsec/min.
- Photometry RMS errors consist of 0.05 mag for bright objects when the magnitude is less than 16.5 mag, and 0.07-0.15 mag for faint objects with the magnitudes from 16.5 to 18 mag.

Software

- The SBG telescope and the CCD system are operated by the SBGControl software (Glamazda 2012) developed at AO UrFU.
- Astrometric processing of the observations has been made using IzmCCD (Izmailov et al. 2010) and AM:PM (Krushinsky2017) Software Packages.

0.0	0.2	0.4	0.6	0.8	1.0			
phase								

Figure 2. Phase light curve of the NEA (2061) Anza (six nights, R filter)

Results

- From 2007 to 2020 we have observed 338 near-Earth asteroids with magnitudes from 9.5 to 19 mag:
- 157 Apollo asteroids including 74 PHA,
- 144 Amor asteroids with 13 PHA,
- **35 Aton** asteroids including 12 PHA,
- two Atira asteroids (163693) Atira and (367943) Duende.
- We have got improved elements of the NEA's orbits and evaluated the axial rotation periods and color indices.
- **Table 1** gives estimates of the periods of axial rotation and color indices obtained from the photometric observations. The values from the ALCDEF (http://alcdef.org/) are also given.
- As an example, **Figure 2** shows the phase light curve of the NEA (2061) Anza (six nights, R filter).

Discussion and Conclusions

- Intense positional and photometrical observations of NEAs are needed to improve the accuracy of NEAs ephemeris. It is necessary to take into account the influence of the Yarkovsky effect.
- In the future, we plan to refine the values of the A2 parameter and the semimajor axis drift rates due to the Yarkovsky effect based on astrometric observations.
- We used the IDA Software Package (Bykova et al. 2012) to improve the orbital elements of the asteroids.
- The code known as **Orbit9** (**OrbFit** Software Package (OrbFit Consortium 2011)) has been used to research the dynamical evolution of asteroids.
- Determining the **position of the NEA's axis of rotation** based on photometric observations will make it possible to correctly take into account the influence of the Yarkovsky effect.

References

- 1. Bykova L.E., Galushina T.Y., Baturin A.P., (2012). The application suite IDA for investigation of dynamics of asteroids, Izvestiya Vysshikh Uchebnykh Zavedenij. Fizika, 55, 89-96
- 2. Glamazda D., (2012). Principal algorithms for the control of Kourovka Observatory SBG camera, Astrophys. Bulletin, 67(2), 237-244
- 3. Izmailov I.S., Khovricheva M.L., Khovrichev M.Y., et al., (2010). Astrometric CCD observations of visual double stars at the Pulkovo Observatory, Astronomy Letters, 36, 349-354.
- 4. Glamazda, D.: 2012, Principal algorithms for the control of Kourovka Observatory SBG camera, Astrophys. Bulletin. 67(2), 237-244
- 5. Kaiser G., Wiebe Yu., (2017). Positional observations of small solar system bodies with the SBG telescope at the Astronomical Observatory of the Ural Federal University, Solar System Research, 51(3), 233-244
- 6. Krushinsky V.V., (2017). AM:PM, automatic astrometry and photometry of asteroids. *Physics of Space: Proceedings of the 47th Student Scientific Conference*, Ural University Press, 205-206 (In Russian)
- 7. Kuznetsov E., Glamazda D., Kaiser G., Wiebe Yu., (2017). Alerting observations of asteroids at the SBG telescope of the Kourovka Astronomical Observatory in the Gaia-FUN-SSO Network, Astronomy and Astrophysics in the Gaia sky. Proceedings IAU Symposium No. 330, Cambridge University Press, 403-404
- 8. OrbFit Consortium. OrbFit: Software to Determine Orbits of Asteroids, (2011). Astrophysics Source Code Library, arXiv:1106.015.