
Lessons learned: Experience of a SMP2 compliant Hardware-In-the-Loop simulation

framework

A. Weihusen, W. Bothmer, A. Bittkau, G. Robbers

OHB System AG

Universitätsallee 27-29

28359 Bremen, Germany

Email: andreas.weihusen@ohb.de

INTRODUCTION

The simulation of satellite systems plays an increasing role in the support of several engineering and operational activities

during the lifecycle of a satellite programme. In order to reduce the development effort, costs and risks for software-based

simulators in satellite programmes, it is beneficial to maximise the reuse of simulation software items for different use

cases. OHB has adopted the SMP2 (Simulation Modelling Portability 2) Standard [1] to facilitate such a model reuse

among the different simulator facilities of a project, as well as from project to project. SMP2 is widely used in the

European space sector and is constantly evolving, as shown by the recent publication of the SMP standard [2]. Because

simulation technologies also rapidly advance in other industrial domains, like avionics and automotive, it is important to

identify any opportunity to leverage those technological advancements also in the space sector. For simulation in

combination with hardware, the FMI standard [7] has been established, which originates in the automotive sector but also

seems applicable in the space domain. In the following, OHB’s experience in using SMP2 and FMI together is described.

A similar approach has been investigated in parallel in the “SIMULUS Next Generation” project [3].

Over the last years, OHB developed its own SMP2 compliant simulation runtime Rufos. This was first presented at SESP

2015 [4] and has been extended afterwards to the major component of OHB’s ‘Software Base Simulator’ [5]. This Base

Simulator approach was first used within the SARah satellite mission for the development of three different simulator

facilities:

 A Software Validation Facility (SVF), used to develop and validate on-board software,

 an Assembly Integration & Verification Simulator (AIVS), used to emulate non-available hardware in an EGSE

environment,

 and a Training, Operations and Maintenance Simulator (TOMS), used to validate flight control procedures, train

the flight control team and support operations.

The SARah SVF and TOMS simulators are delivered as pure software applications with software interfaces to the

corresponding monitoring and control facilities, while the AIVS must also provide hardware interfaces to the EGSE

environment, such as electrical inputs/outputs and a MIL-STD-1553B bus interface. Moreover, the AIVS must provide

hard real-time simulation capabilities to support hardware-in-the-loop testing.

Fig. 1 illustrates the different designs of SVF and AIVS. The TOMS design is similar to the SVF design.

Fig. 1. Comparison of SVF and AIVS design

SIMULATOR IMPLEMENTATION

The implementation of the SARah AIVS can be divided into three main steps: the selection of an appropriate hardware

platform, the adaptation of the simulation runtime to the selected hardware platform and the implementation of

appropriate interfaces between the software models and the hardware I/O cards. Each of these steps will be described in

the following.

Hardware Platform

The chosen hardware platform of the SARah AIVS is the SCALEXIO system from dSPACE. This system provides a

highly flexible HIL simulation platform, which has been customized to the specific needs of the SARah EGSE team.

The SARah AIVS system is composed of a processing unit, I/O boards and electronics. The processing unit is the

computing core. It is based on an industrial PC with an Intel XEON processor. The SCALEXIO system uses the real-time

operating system QNX. The I/O boards and electronics were configured and built according to the hardware interface

requirements of the SARah AIVS. The following hardware interface types are provided:

 High voltage high power command (HV-HPC) receiver

 Analogue signal monitor (ASM) source

 ASM receiver

 Bi-level discrete monitor (BDM) source

 Bi-level switch monitor (BSM) source

 Variable electrical load

 RS-422 UART

 MIL-STD-1553B

Accompanying the hardware is a software suite from dSPACE that contains specific tools to support the development,

configuration and operation of the SCALEXIO simulation. These tools are installed and executed on an external PC that

is connected to the SCALEXIO system via LAN.

Although the SCALEXIO system does not support SMP2 natively, OHB determined through analysis that developing

SMP2 support is possible by encapsulating the simulation components in a Functional Mock-up Unit (FMU), which

exchanges data with the SCALEXIO I/O model via Functional Mock-Up Interface (FMI) variables as defined in [7].

Generally, a simulation is executed as a real-time application on the SCALEXIO processing unit. This application is built

from a ‘real-time model’, which consists of two parts: the ‘I/O model’ and the ‘behaviour model’. The interface between

the two parts is called the ‘model interface’ and can be seen in Fig. 2.

The I/O model is implemented in the software ConfigurationDesk, which is part of the software suite provided by

dSPACE. The model defines the functions for measuring and generating I/O signals with access to the real-time hardware.

For example, an analogue input can be created in the I/O model by linking the voltage measured at a specified channel of

a specified board to a named variable of type Float64 in the model interface.

The I/O model has been prepared and delivered by dSPACE according to the specification of the SARah AIVS.

The behaviour model had to be implemented by OHB. It contains the algorithm of the controlled system. In case of the

SARah AIVS, the behaviour model includes the SMP2 simulation environment and the equipment models. The

implementation of the model can be done in three ways on the SCALEXIO system: as MATLAB/Simulink model, as V-

ECU (virtual Engine Control Unit) or as FMU (Functional Mock-up Unit). As SMP2 is implemented in C++, and the

FMU interface is implemented in C, an FMU is the most suitable method to implement the behaviour model for the AIVS.

The SCALEXIO software stack ensures that data between the I/O model and behaviour model is interchanged in

accordance with the model interface.

Fig. 2. SCALEXIO real-time model components

Adapting Rufos

The initial development of OHB’s SMP2 compliant simulation runtime Rufos focused on its use for purely software-

based simulators, which are delivered as desktop applications and without any specific support for use in HIL simulators.

At that time, the only HIL simulation platform known to support SMP2 was EuroSim, which was developed by a

consortium of Airbus D&S Netherlands B.V., Altran Netherlands B.V. and the Netherlands Aerospace Centre NLR. The

fact that Rufos and the required models have already been used successfully in the SARah SVF pushed the decision to

adapt these components to the SARah AIVS hardware platform as well.

Since both operating system (Linux for SVF, QNX for AIVS) are POSIX-compatible, only a few adaptations concerning

the toolchain were required to port Rufos and its dependencies to the 32-bit QNX 6.5.0 real-time operating system of the

SCALEXIO processing unit. This work included:

 updating and patching the QNX toolchain for C++11 support

 patching and cross-compiling boost and python libraries (Rufos dependencies)

 cross-compiling Rufos

Additional changes were made to ensure real-time performance, such as:

 adding a memory pool so that dynamic memory can be allocated with constant execution time

 removing system calls with non-bounded execution time

 removing writing of log files to disk

Afterwards, Rufos was encapsulated in a FMU to provide the behaviour model for the SCALEXIO environment. A FMU

denotes a model that implements the Functional Mock-up Interface (FMI), a free, tool-independent standard that defines

an interface for the coupling of simulation tools [7].

In accordance with the FMI standard, the Rufos FMU implements an initialisation function, a step function that is to be

executed periodically, and getters and setters for input and output variables, which form the interface to the I/O model.

The initialisation function initialises the SMP2 simulation runtime and models (without a MMI). In the step function, the

simulation time is advanced equal to the elapsed Zulu time (the real clock time based on the computer’s clock) since the

function was last executed and the simulator events that have been scheduled for the elapsed simulation time are executed.

The SCALEXIO software stack manages the periodic execution of the step function and synchronises the values of the

FMU input and output variables with the I/O model between every step. Fig. 2 illustrates the relationship between the

Rufos FMU and the I/O model.

Software/Hardware Interfaces for SMP2 Models

SMP2 compliant simulation models of the satellite units were first developed for use in the SARah SVF. The electrical

harness (i.e. electrical lines and communication buses) is simulated by corresponding line models, which are SMP2

compliant as well. The interfaces between the equipment models and the line models are implemented as ‘OHB

Simulation Interfaces’. These are standardised software-based interfaces that define how the electrical interfaces are to

be simulated. They are similar in scope to those defined by the ‘ISIS Training, Operation and Maintenance Interface

Specification’ [8] and comparable to SystemIF Ports of Spacecraft Simulation Reference Architecture [9]. Equipment

models include a reference to a corresponding OHB Simulation Interface for each electrical interface that is being

simulated. An example of such a connection in the SVF is illustrated in the upper part of Fig. 3.

The unit simulation models can be reused in the SARah AIVS without modification or rework because the OHB

Simulation Interfaces hide the implementation of the electrical interfaces from the equipment model. The equipment

models depend only on the C++ standard libraries, SMP2 interfaces (provided by Rufos) and OHB Simulation Interfaces.

They have been designed with SVF/AIVS interoperability from the start.

The major adaptation for AIVS was the development of new SMP2 compliant AIVS line models that facilitate the

software/hardware interface. An AIVS line model implements an OHB Simulation Interface at one end, so that it can

connect to an equipment model. The other end of the AIVS line model is connected to the I/O model (via FMU input and

output variables), joining the signal chain to the physical equipment. An exception is the AIVS M1553 line model, which

is connected directly to the SCALEXIO M1553 hardware card instead of the I/O model. This line model uses the C++

API of the M1553 hardware driver directly and implements hardware interrupt handlers to provide the higher

responsiveness required for MIL-STD-1553B communications.

To add an equipment model to the AIVS, the only additional work is to configure the signal chain for each of its electrical

interfaces. Each simulated electrical interface is linked to an instance of an AIVS line model via an OHB simulation

interface. The AIVS line model in turn is linked to the I/O model via FMU input and output variables. The I/O model

defines a link to the SCALEXIO hardware. An example of this is illustrated in the lower part of Fig. 3. This results in

output signals from an equipment model that control SCALEXIO hardware outputs, and inputs from the SCALEXIO

hardware that are passed as inputs signals to the equipment model. Fig. 3 shows a comparison of the signal chains in SVF

and AIVS for an example model.

Fig. 3. Comparison of signal chains in SVF and AIVS

RESULTS

The development of the SARah AIVS has been completed and the simulator is now used by the EGSE team for functional

testing at subsystem and satellite level, simulating unavailable physical equipment in the engineering model (EM) of the

SARah satellite. The AIVS’ behaviour model includes instances of ten different equipment models, simulating AOCS

components as well as payload components. The simulation models were reused from the SARah SVF without further

modifications.

The AIVS is connected to the EM by supporting the following electrical interfaces:

 HV-HPC receiver, for pulse widths 50 milliseconds

 ASM source and receiver

 BDM and BSM source

 Variable electrical load

 MIL-STD-1553B

 RS-422 UART

The simulation runs in steps at 1000 Hz, meaning that simulation events are executed within one millisecond of their

scheduled time. Operation and monitoring of the AIVS are performed through PUS packets carried over the EDEN

protocol, in the same way as other SCOEs (Special Check-Out Equipment).

The SARah AIVS passed its interface tests and is now regularly used in HIL campaigns. According to the good experience

with the initial simulator version, the EGSE team even requested to add additional equipment models to the AIVS that

had not originally been foreseen; the integration of such models now typically takes around one week.

LESSONS LEARNED

The following experiences were gained with the development of the SARah AIVS:

The usage of the FMI standard for exchanging data between the behaviour model and the I/O model has proven as an

efficient way to integrate the SVF simulation models into the AIVS. This approach granted the real-time capability of the

simulator within the HIL setup.

The reuse of SMP2 compliant simulation components decreased the development time of the behaviour model

considerably. As described before, only some adaptation steps were required to port the simulation runtime Rufos to the

real-time OS QNX, while the simulation models could be integrated without modifications. It turned out, that some of

the configuration scripts initially violated the real-time conditions, but this could be fixed by dividing the scripting

functions into smaller steps that are assigned to dedicated time-slots. The general AIVS approach has proven as

applicable.

The SCALEXIO system is a complete solution, consisting of a real-time capable processing unit, HW I/O interfaces and

the corresponding drivers for the target OS. In addition, the system was delivered in a configuration customized to the

needs of OHB with the appropriate I/O model already integrated. Accordingly, OHB did not need to undertake any further

effort in configuring the HW / SW interface and could focus on the integration of the simulation runtime and the

simulation models into the behaviour model.

To guarantee a stable performance, the user access to the SCALEXIO system has been restricted. This made the

development of the behaviour model more challenging, because the standard tooling for development, debugging and

performance analysis could not be used in the usual way. Thus, the model was composed on the standard development

environment on Linux, subsequently compiled with the QNX toolchain and finally integrated to the real-time application

and installed on the SCALEXIO system by the ConfigurationDesk software. The simulation is controlled via specific

SCOE TCs that are send from the Central Checkout System (CCS) using the EDEN protocol.

The SARah AIVS was used initially in a test laboratory, where it was accessible via LAN. In this setup, it was possible

to perform the software uploads, configurations and tests remotely. Later on, the AIVS moved to the integration hall for

integrating it in the satellite’s EM. With this step, remote access was no longer possible. Since then software uploads,

configurations and tests have to be done manually inside the integration hall, which increases the effort considerably.

Moreover, the time slots for the simulator developers decreased, because the system is intensively used by the EGSE

team. However, this situation is considered a general challenge when using an AIVS for co-simulation in an EGSE

environment and must be taken into account in the planning.

CONCLUSIONS

The development and application of the SARah AIVS have shown that the combination of the two standards SMP2 and

FMI in a real-time capable simulator is possible and works well in practice. SMP2 enables the reuse of SVF software

items like runtime environment and equipment models in an AIVS, while FMI adds the interfaces to the hardware drivers

of the I/O cards. The reuse of software components in purely software-based simulators (SVF, TOMS) as well as in HIL

simulators (AIVS) without modification is an important rationalization step that helps to reduce development efforts and

risks, thereby reducing costs while maintaining quality.

A promising continuation of this activity would be an exchange of experience with the SIMULUS NG study [3] and the

identification of topics that can be explored further on in the scope of RATIO-SIM or related research activities.

REFERENCES

[1] “SMP 2.0 Handbook” EGOS-SIM-GEN-TN-0099, issue 1.2, 28.10.2005

[2] “Space Engineering – Simulation modelling platform” ECSS-E-ST-40-07C-DIR1, provided for public review,

23.10.2018

[3] P. Steele, V. Reggestad, “Evolution of the Operation Simulator Infrastructure at ESOC: SIMULUS Next

Generation”, Proceedings of SESP 2017

[4] P. Froehner, A. Gamarra, M. Gehre, A. Weihusen, F. Hoffmann, D. Della Ratta, „MTG SVF: An excellent

opportunity for assessing the SMP2 compatibility“, Proceedings of SESP 2015, March 2015

[5] A. Weihusen et al., “OHB’s Software Base Simulator: Efficient Development of Software-Based Simulators by Re-

Use of Generic Components”, Proceedings of SESP 2017

[6] A. Trung, M. Gehre, P. Froehner, D. Della Ratta, N. Lambl, D. Lammers et al, “Developing a SMP2 compliant

Hardware‐In‐the‐Loop simulation framework”, Proceedings of SESP 2017

[7] MODELISAR consortium, Modelica Association Project “FMI - Functional Mock-up Interface for Model Exchange

and Co-Simulation”, version 2.0, July 2014

[8] ISIS AIV Project Team, “ISIS Training, Operation and Maintenance (TOMS) Interface Specification”, Issue 4,

September 2011.

[9] Steinle T., Eisenmann H., “Spacecraft Simulation Reference Architecture – High level Architecture and Interface

Requirements”, Issue 1.3, October 2010.

