IMPACT EFFECTS CALCULATOR

http://AsteroidHazard.pro

SHOCK WAVE EFFECTS FROM IMPACTS OF COSMIC OBJECTS WITH DIAMETER FROM A FEW METERS TO 3KM

> IAA PLANETARY DEFENSE CONFERENCE 2021 26-30 APRIL 2021

IDG RAS D.O. Glazachev, O.P. Popova, V.V. Svetsov, V.V. Shuvalov, N.A.Artemieva, and E.D.Podobnaya

Motivation

Scaling relations

online calculator

easy to use

Chelyabins

Physical process

Modeling H=30km -0.05 n 0.05 km slow calc

quick calc

The main motivation is to create a quick and accurate tool for

assessing the consequences of the impact of a cosmic body.

impossible for a full – scale

laboratory experiment

Quasi-liquid meteoroid model

Basis:

large meteoroid deformation begins at h, where aerodynamical loading>>strength

Main assumptions

- Zero strength
- Ablation as evaporation
- Radiation transfer in thermal conductivity approximation

Formal range

D>30-50 m; h<40 km (Svettsov et al. 1993)

Restrictions:

quasi-liquid assumption

Relative density distribution along trajectory at different altitudes h D=40 m, V=18 km/s; chondritic material (2650 kg/m³), α =90⁰ Black – solid meteoroid material

Quasi-liquid model= QL model

Modeled variants

Effective airburst altitude

Effective airburst altitude – uncertainty area

 $H_{eff} = (-1.3 * H * Ln(D * (Sin[\alpha]/H) * (\rho/\rho 0)^{2/3}) + H)/1000$

Scaling relation for overpressure

$$\Delta p = el * m * \left(\frac{E_k^{1/3}}{H_{eff}^2 + x^2 + y^2}\right)^{pow}$$

x, y – spatial coordinates el– ellipticity parameter, E_k – kinetic energy of the impactor in kt TNT, H_{eff} - effective height of point source, ϕ – arctan(y/x).

<u>Airburst</u>	Crater-forming
pow = 1.5	pow = 1.4
m = const	$m = function(E_k)$
$H_{eff} = function(\rho, D, \alpha)$	$H_{eff} = 0$
$el = el(\phi, n_{ab}, b_{ab}, f_{ab})$	$el = el(\phi, n_{cf}, b_{cf}, f_{cf})$
$n_{ab} = fucntion(\rho, D, \alpha, V)$	$n_{cf} = fucntion(\rho, D, \alpha, V)$
$b_{ab} = fucntion(\rho, D, \alpha, V)$	$b_{cf} = fucntion(\rho, D, \alpha, V)$
$f_{ab} = fucntion(\rho, D, \alpha, V)$	$f_{cf} = fucntion(\rho, D, \alpha, V)$

$$el(\phi, ...) = \begin{cases} \sqrt{n^{2} \operatorname{Sin}[\phi]^{2} + b^{2} \operatorname{Cos}[\phi]^{2}} \\ \frac{n * f}{\sqrt{n^{2} \operatorname{Sin}[\phi]^{2} + f^{2} \operatorname{Cos}[\phi]^{2}}}, -\pi \le \phi < 0 \end{cases}$$

Wind speed:

$$Vmax = \frac{330}{\gamma} * (p/p \ 0 - 1) * \left(1 + \frac{\gamma + 1}{2 * \gamma} * (p/p \ 0 - 1)\right)^{-1/2}$$

 γ - adiabatic index

$$vmax = \begin{cases} \frac{67.1 * E_k^{0.38}}{H_{eff}^{1.53}}, \rho = 1000 \ kg/m^3\\ \frac{40.51 * E_k^{0.39}}{H_{eff}^{1.45}}, \rho = 3320 \ kg/m^3 \end{cases}$$

Overpressure field with model and errors

Plot №17, D:50 m, α:30°, V:15 km/s, ρ:3320 kg/m³, E:5.8 Mt TNT

Modeled variants in 2021 PDC excercise

80

20

«As mentioned previously, the size of 2021 PDC is highly uncertain, ranging from as small as 35 meters to as large as 700 meters. This estimate is based on the asteroid's brightness, its estimated distance, and the wide range of possible albedos (reflectivities).

Little is known about other properties of the object, such as composition and density. As a result, the potential impact EntryAngle damage and population risk is also highly uncertain. Based on these estimates, the possible energy released on impact could range from 1.2 Mt to 13 Gt (TNT equivalent).

Velocity from 15.12 to 15.87 km/s Entry angle from 0 to 90°

Scaling relation for different diameters

density: 3320 kg/m³ diameter: various fall angle: 60° velocity: 15 km/s

12

Scaling relation for different diameters

density: 3320 kg/m³ diameter: various fall angle: 60° velocity: 15 km/s

13

Scaling relation for different entry angles

Tunguska and Chelyabinsk events

Location map of eyewitness reports. .

Glass damage (filled red circle); glass rattled, not broken (o); chum destruction (Λ); heat and unconsciousness (orange X); people falling (person symbol).

Gray areas - ΔP based on scaling relations (12 Mt, 2000 kg/m3, 25°, 27 km/s).

Contours (from dark to light): $\Delta P \sim 1500$, 1000, 700 and 500 Pa (*Jenniskens et al. 2019*)

km 0 100-00 0 0 50-0.02 0 0.01 -50-0.005 -100b 50 100 150 0 200 km

 ΔP obtained in the frame of QL model (*Shuvalov et al.2017*), black circles - reported damage, open circles – no damage. Main characteristics of ΔP zones (>1 kPa) - satisfactory agreement Scaling relations (not given) are also in agreement.

http://www.AsteroidHazard.pro

🔒 Home 🕱 Русский

Projectile Parameters

Diameter: 19 m Density: 3320 kg/m³

Impact Parameters Velocity: 19.2 km/s Entry Angle: 18.3 °

Point of Effect

Distance to the point of intersection of the trajectory with the Earth's surface: 100.05 km

Supported by RSF

http://www.AsteroidHazard.pro

Projectile Parameters Entry Parameters Observation Point

Diameter: 19 m	Velocity: 19.
Density: 3320 kg/m ³	Entry Angle:
Energy: 2.19 * 10 ¹⁵ J	Latitude: 54.
Energy (kt TNT): 5.23 * 10 ² kt TNT	Longitude: 6
	Azimuth: 103

Zero Point: The point of intersection of the trajectory with the Earth's surface Angle to Trajectory Projection, ψ : 92° Distance to the Zero Point, L: 107 km Distance Across the Trajectory Projection, L_y: 107 km Distance Along the Trajectory Projection, L_x: 3 km Latitude, ϕ : 54.04° Longitude, λ : 59.62°

RESULTS

ð	Airblast Wave	Overpressure: 0.0016 atm (0.16 kPa)	more
\mathbf{O}	Irradiation	Thermal exposure: 0.14 J/cm ²	more
?	Crater	No crater	more
N.	Ejecta	No ejecta	more
	Seismic effect	Magnitude: 3.4	more
	Atmospheric disturbances	Peak amplitude of relative density oscillations at an altitude of 300 km: 0.52	more

Impact Effects	Navigation	Language
Comprehensive assessment of hazardous effects caused by impacts of cosmic bodies	About Calculator Articles	Русский English

http://www.AsteroidHazard.pro

Projectile Parameters Entry Parameters Observation Point

Diameter: 30 m	Velocity: 15.00 km/s	Zero Point: The point of intersection of the trajectory with the Earth's surface
Density: 3320 kg/m ²	Entry Angle: 60°	Angle to Trajectory Projection, ψ: 180°
Energy: 5.28 * 10 ¹⁵ J	Latitude: 54.45°	Distance to the Zero Point, L: 50 km
Energy (kt TNT): 1.26 * 10 ³ kt TNT	Longitude: 64.56°	Distance Across the Trajectory Projection, Ly: 0 km
	Azimuth: 103°	Distance Along the Trajectory Projection, Lx: -50 km
		Latitude, φ: 54.46°
		Longitude 2: 64 45°

ALTER PARAMETERS

RESULTS

ð	Airblast Wave	Overpressure: 0.013 atm (1.3 kPa)	less
		Numerical simulations of a shock wave from the cosmic object impact provide possibility to suggest scaling relations for a value of maximal overpressure and its distribution on the surface, for maximal wind velocity behind the front and for a squares, where overpressure is larger than a fixed levelall values are determined based only on the properties of the impactor	
Effective Alti Maximal ove Distance to t Areas, at whi at 0.0 at 0.0 at 0.1 at 0.2	itude: 12 km rpressure: 0.12 atm (12 kPa) he center of a overpressure field ich chosen levels of overpressur 2 atm: 0.42 km ² 5 atm: 0.07 km ² atm: 0.04 km ² atm: 0.04 km ²	l from the point of intersection of the trajectory with the Earth`s surface: 5.6 km e exceed:	
The value of Maximum wi	the overpressure in the point of ind speed behind the shock from	observation: 0.013 atm (1.3 kPa) t in the point of observation: 3 m/s	
	Irradiation	Thermal exposure: 1.0 J/cm ²	more

API (application programming interface)

Wolfram Mathematica[®]

HTTP post request

retrievedF[d_] := Import[URLRead[HTTPRequest["http://asteroidhazard.pro/en/api", <|"Method" → "POST", "ContentType" → "application/json", "Body" → ExportString[</pre>

```
</
    "effects" → {"shockwave"},
    "impactor" → <|"diameter" → d, "density" → 3320|>,
    "entry" → <|"angle" → 18.3, "velocity" → 19|>,
    "point_of_effect" → <|
        "distance_across_trajectory" → 20,
        "distance_along_trajectory" → 5|>
        |>
        , "RawJSON", "Compact" → True] |>]],
"RawJSON"]["shockwave"]["overpressure"]["value"];
```

```
In[*]:= data = Table[{d, retrievedF[d]}, {d, 20, 200, 5}];
```


Summary

- The scaling relations for shock wave effects for 20 3000 m objects impact are presented.
 Scaling relations for overpressure, wind and some other characteristics are constructed.
- For the first time this scaling relations take into account spatial asymmetry induced by impact angle.
- Suggested scaling relations were compared with modelling results and existing observational data and demonstrated reasonable agreement
- Described scaling relations are implemented into web-based calculator
- PDC probable impactor parameters are very uncertain and its impact may result in consequences of different scale.

Thank you for attention

follow the updates on the site AsteroidHazard.pro