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Figure 1: Simplified overview of our two-stage system. Stage 1 is the core contribution of this work, while
Stage 2 is used to demonstrate the usefulness of the synthesised outputs. By transforming synthetic images of
the lunar landscape from the Planet and Asteroid Natural Scene Generation Utility simulator into images which,
although synthesised, more faithfully capture the nuances and attributes of the moon’s surface, we produce more
realistic-looking lunar data. This is important for training subsequent models e.g. for segmenting and detecting
lunar craters, since our synthesised data is derived from precise Planet and Asteroid Natural Scene Generation
Utility crater locations, which real crater databases cannot guarantee.

ABSTRACT

It is critical for probes landing on foreign planetary
bodies to be able to robustly identify and avoid haz-
ards – as, for example, steep cliffs or deep craters can
pose significant risks to a probe’s landing and oper-
ational success. Recent applications of deep learning
to this problem show promising results. These mod-
els are, however, often learned with explicit supervi-
sion over annotated datasets. These human-labelled
crater databases, such as from the Lunar Reconnais-
sance Orbiter Camera (LROC), may lack in consis-
tency and quality, undermining model performance
– as incomplete and/or inaccurate labels introduce
noise into the supervisory signal, which encourages
the model to learn incorrect associations and results
in the model making unreliable predictions. Physics-
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based simulators, such as the Planet and Asteroid
Natural Scene Generation Utility, have, in contrast,
perfect ground truth, as the internal state that they
use to render scenes is known with exactness. How-
ever, they introduce a serious simulation-to-real do-
main gap – because of fundamental differences be-
tween the simulated environment and the real-world
arising from modelling assumptions, unaccounted-
for physical interactions, environmental variability,
etc. Therefore, models trained on their outputs suf-
fer when deployed in the face of realism they have
not encountered in their training data distributions.
In this paper, we therefore introduce a system to
close this “realism” gap while retaining label fidelity.
We train a CycleGAN model to synthesise LROC
from Planet and Asteroid Natural Scene Generation
Utility (PANGU) images. We show that these im-
prove the training of a downstream crater segmen-
tation network, with segmentation performance on
a test set of real LROC images improved as com-
pared to using only simulated PANGU images. This
will in the future allow researchers to more robustly
test in-the-loop autonomous systems when tested in
simulators such as PANGU.



Figure 2: The Lunar Reconnaissance Orbiter Camera (LROC) dataset used in this investigation was obtained
through the NASA and European Space Agency (ESA) databases. The dataset consists of a very high resolution
image of the entire lunar surface, which was generated by stitching together thousands of images taken by the
Lunar Reconnaissance Orbiter (LRO), with corresponding document containing the location, size, and the
approximate shape of the craters. The approximate resolution of the LROC image is around 100m per pixel.
In the associated Lunar Crater Database [1], labels of craters were generated by human inspection, i.e. human
volunteers hand-labelled each crater in the image.

1. INTRODUCTION

Accurate representation of extraterrestrial land-
scapes is important for landing [2] and navigation [3]
– for example, terrain understanding can improve the
precision of a spacecraft navigation by positioning
relative to large-scale features or may inform terres-
trial missions [4] after landing – as well as scientific
understanding of the geology and evolution of plan-
ets and moons [5].

In this area, data from the the Lunar Reconnais-
sance Orbiter Camera (LROC) [6], a high-resolution
imaging system on board the Lunar Reconnaissance
Orbiter (LRO) spacecraft [7], is increasingly being
used to learn deep models for crater detection [8, 9,
10, 11, 12, 13, 14, 15, 11, 16]. In these, convolutional
neural networks (CNNs) are well-suited to learning
robustness to variability in cameras arises from illu-
mination conditions, sensor sensitivity, noise, camera
settings, and lens characteristics. The lunar surface
as imaged by this sensor is shown in Fig. 2.

Alongside this, the Planet and Asteroid Natural
Scene Generation Utility [17] and its extensions [18]
are popular for in-the-loop testing of spacecraft sys-
tems in simulation as well as as a source of data
for machine learned systems [19, 20, 21, 22, 23, 24,
25, 26, 27]. Here, simulators are valuable for train-
ing deep models as they provide abundant data, are
controllable and cost-effective, and allow rapid pro-
totyping – i.e. they are safe and efficient. The lunar
surface as simulated by PANGU is shown in Fig. 3,

which – while very detailed – is readily identifiable
as simulated.

Comparing Figs. 2 and 3, however, there remains a
gap in realism. For this, models trained with simu-
lated data which is synthetically altered to be more
realistic perform better than models trained with
data generated by simulators as well as with real data
that is altered with classical image-processing tech-
niques (blurring, flipping, etc) [28]. Here, learned
augmentations can achieve more complex appear-
ance transformations that classical augmentations do
not capture – useful when data features intricate pat-
terns or features.

Therefore, in this work, we have developed an ap-
proach to generating realistic lunar surface images
using a CycleGAN [29]. By converting “fake” im-
ages from the PANGU simulator into highly realis-
tic images that accurately represent the features and
characteristics of the lunar surface, we are capable
of generating more realistic data. This is essential
for training downstream segmentation and detection
models, as our generated data is accompanied by per-
fect PANGU ground truth, which are laborious and
expensive to perform by hand and are imperfect or
incomplete for the Lunar Crater Database [1]1 an-
notation of LROC dataset, as motivated in Fig. 4.
Here, imperfection in human labels is often due to
subjectivity (different ways of interpreting visual in-
formation), ambiguity (images with complex or am-

1astrogeology.usgs.gov/search/map/Moon/Research/

Craters/lunar_crater_database_robbins_2018

http://astrogeology.usgs.gov/search/map/Moon/Research/Craters/lunar_crater_database_robbins_2018
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Figure 3: Sample PANGU image, taken from www.esa.int/Enabling_Support/Space_Engineering_
Technology/Shaping_the_Future/Planet_and_Asteroid_Natural_Scene_Generation_Utility_PANGU_
Tool_Enhancement . We chose PANGU as our baseline simulator due to its ease of use and the numerous
options it has to generate various terrains and its widespread adoption in terrain simulation. As the default
parameters are set to resemble the lunar surface, parameters for the distribution in size and age of the craters
were left untouched. One issue with the PANGU outputs is the artificially well-defined crater edges. This
can be somewhat remedied by adjusting the crater edge decay option in the PANGU interface. However,
manual fine-tuning of this kind can be avoided in a learned approach, which can additionally capture other
non-intuitive factors which are not modelled by the procedural simulator.

biguous content), etc.

2. RELATED WORK

Here we discuss existing crater identification systems
to identify works for which our method for synthe-
sising more realistic lunar surface imagery will be
beneficial – in training and testing.

Manual identification involves classification of lu-
nar craters based on their size and morphology [1,
30], also performed in [31] for Mars impact craters
by a larger team. However, this method is time-
consuming can be subjective (prone to human error),
and does not scale well to large projects.

Digital image processing with classical machine
vision techniques reduces this effort, which may in-
volve edge detection and ellipse fitting [32]. These
methods must often be tuned by hand and are espe-
cially prone to image noise.

Machine learning techniques, instead, are opti-
mised over examples to distinguish data based char-
acteristic features. Early work in this area applied
support vector machines (SVMs) [33] and continu-

ously scalable template models (CSTMs) [34]. These
methods, however, still require feature engineering.

Neural networks, in contrast, learn hierarchi-
cal representations directly from large amounts of
data. This has been applied to crater detection in
various ways, including for bounding box predic-
tion [16, 11, 13], crater rim segmentation [35, 14],
and segmentation of the entire crater [10, 15].

In applying these techniques to lunar crater detec-
tion, the issue of incomplete labelled sets over a
range of lunar crater databases is discussed in [36].
Therefore, in this work, we turn to simulators for
perfect label sets, and propose learning to apply real-
ism to the simulated samples from unpaired domain
adapation.

Closest to our work is [37, 38]. In [37], sim-to-real
transfer involves changing image exposure and con-
trast, additive white Gaussian noise, and blurring –
whereas our sim-to-real transfer is learned onto the
real data distribution. In [38], domain adaptation is
performed at the feature level, meaning that there
is no sim-to-real output at the sensor level as in our
work. Both [37, 38] focus on spacecraft pose esti-
mation – with views of orbiting craft – rather than
bird’s eye views of planetary landscapes.

http://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/Planet_and_Asteroid_Natural_Scene_Generation_Utility_PANGU_Tool_Enhancement
http://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/Planet_and_Asteroid_Natural_Scene_Generation_Utility_PANGU_Tool_Enhancement
http://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/Planet_and_Asteroid_Natural_Scene_Generation_Utility_PANGU_Tool_Enhancement


Figure 4: Lunar Crater Database sample (left) and corresponding binary segmentation mask (right). Some
small craters are missing (e.g. in the top right of the frame) – we indicate two such clusters (green and red),
but on inspection find many other missing craters of a similar size. This is determintal when optimising neural
networkss (NNs) or other supervised machine learning models.

Finally, while this initial proof-of-concept investi-
gation was carried out with generative adverse-
rial networks (GANs), future work will leverage
improvements from recent latent diffusion models
(LDMs) [39] which offer better control over the gen-
eration process and exhibit improved convergence
properties.

3. METHOD

Our system is as illustrated in Fig. 1. It is a two-stage
process, consisting of first training an image trans-
lation model and then using the outputs of the im-
age translation model to train a crater segmentation
model. Therefore we are demonstrating the utility of
our synthesised images in a downstream task. Other
downstream tasks which could benefit from this more
realistic source of training data may include learned
pose estimation for autonomous space landers [25].

3.1. PANGU

The Planet and Asteroid Natural Scene Generation
Utility (PANGU) [17] is a simulator used to generate
synthetic images of planetary surfaces and asteroids
It is often used in space mission planning and anal-
ysis, and it is developed and maintained by ESA.
PANGU uses a combination of high-resolution topo-
graphic data, multispectral imaging data, and other
parameters to create 3D models of planetary sur-
faces and asteroids, and then generates images of the
landscapes from various viewpoints. The resulting
images can be used to simulate the appearance of
a spacecraft’s view during a flyby, landing, or other
mission phases.

One issue with the PANGU dataset is the artificially
well-defined crater edges. While this can be some-
what remedied by tuning the crater edge decay op-
tion on PANGU, it still does not solve the issues
of the differing terrain appearances, and also sug-
gests that there are other non-intuitive factors at
play. Therefore, it is more beneficial to take a learned
approach to match the general appearance of the ter-
rain to a realistic corpus such as LROC.

In our work, a dataset was generated using the
PANGU software. Large tiles of size 8192 by 8192
pixels were made and sliced into smaller tiles of size
416 by 416 pixels. With an overlap of 208 pixels be-
tween subsequent tiles, each large tile yielded a to-
tal of 1369 smaller tiles. The maximum crater side-
length was limited to 200 pixels to ensure that no
craters are bigger than the tile itself.

3.2. LROC

The Lunar Reconnaissance Orbiter Camera (LROC)
is a high-resolution imaging system on board the Lu-
nar Reconnaissance Orbiter spacecraft. Launched by
NASA in 2009, LRO is a robotic mission designed to
map and study the surface of the Moon.

The LROC system consists of three separate cam-
eras: two narrow-angle cameras (NACs) and one
wide-angle camera (WAC). The NACs capture im-
ages at a resolution of 0.5m per pixel, while the WAC
captures images at a resolution of 100m per pixel.

In our work, as broad views suffice to capture the
general appearance of the lunar surface and consid-
ering it is this visual theme we want to synthesise,
we use the WAC. To conform with the resolution
in Sec. 3.1, images from this camera were sliced into



Figure 5: The left side of the image shows a fake lunar surface image that is clearly computer-generated and
lacks the realism and detail of a genuine image. On the right side of the image, the synthesized lunar image
created using the CycleGAN model is highly realistic and visually striking. The model has successfully captured
the textures, shadows, and other characteristics of the Moon’s surface

tiles of size 416 × 416 pixels. These cover the full
range of longitudes on the moon and the range of
latitudes between ±60◦. Each tile covers an area of
approximately 1730 km2.

3.3. LROC2PANGU (CycleGAN)

CycleGAN [29] enables unsupervised image-to-image
translation between two domains – it learns to cap-
ture style and content information from the input
images. It does this without the need for paired
training data. Specifically, CycleGAN enforces cy-
cle consistency, which ensures that when an image
is translated from one domain to another and then
back, it should remain similar to the original image.

Our CycleGAN2 uses generator networks (which per-
form the image translation – from one style to an-
other) formed by 9 contracting and 9 expanding
ResNet [40] blocks, each block of which in brief con-
sists of either a convolutional (contracting) or decon-
volutional (expanding) layer, and which for ResNet
are connected via shortcuts to other layers in order
to avoid vanishingly small gradients deep in the net-
work.

The discriminators (which the generators must fool
into not being able to tell synthesised styles from
original images) are formed by 3 convolutional layers
with non-linear ReLU activations.

3.4. Crater segmentation (U-Net)

Given the success shown in Jackson et al [35] for
crater detection, a U-Net model was chosen, al-

2With implementation taken from github.com/junyanz/

pytorch-CycleGAN-and-pix2pix

though our core contribution is in improving the real-
ism of lunar simulators and our method is applicable
for other segmentation models.

U-Net features a contracting path to capture con-
text and a symmetric expanding path to precisely
localise object boundaries, making it highly effective
for pixel-level image segmentation. Specifically, the
output of the expanding path is supervised by (op-
timised to produce) binary segmentation masks as
in Figs. 1, 4 and 6, with aerial views input to the
contracting path.

Our U-Net implementation3 consists of 4 down-
sampling blocks, each using an instance-normalised
convolutional layer. These blocks progressively re-
duce the input spatial resolution and produce deeper
feature representations. This is followed by 4 up-
sampling blocks that progressively up-sample the
spatial resolution and return to the original image
channel depth.

Our implementation of the U-Net model was trained
over 30 epochs with a batch size of 15 and learning
rate of 1e−4. The model is mainly comprised of a
series of 3× 3 convolutions, with a stride of 1 and 1
pixel of padding. We use 5 convolutional layers for
both the contraction and expansion path.

4. EXPERIMENTAL SETUP

Datasets Our training and testing datasets contain
craters smaller than 16 km in radius so as to pre-
vent cases where the entire tile is occupied by a sin-
gle crater. We consider it important to focus on
these smaller craters as large craters would other-

3Similar to github.com/milesial/Pytorch-UNet

http://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
http://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
http://github.com/milesial/Pytorch-UNet


wise “mask out” many small craters. All of the mod-
els were trained with approximately 10000 images in
the training dataset and 1000 images in the valida-
tion dataset.

Performance metrics We use a range of metrics
to determine the performance of the model.

1. Accuracy is calculated as the proportion of the
pixels that were predicted correctly in the entire
image.

2. Intersection over Union (IoU) is calculated by
dividing the area of intersection between the
predicted and ground truth regions by the area
of their union.

3. Precision indicates how many of the pixels pre-
dicted to be a crater were actually crater.

4. Recall indicates what proportion of actual
craters were predicted as crater.

5. F1 is the harmonic mean of precision and recall.

6. Specificity, or the true negative rate, quantifies
how well a classifier can avoid false crater detec-
tions by correctly identifying the regions which
are not craters.

5. RESULTS

In the following we compare segmentation models
trained with only simulated examples against models
trained with our sim-to-real transfer applied, as a
proof that the resulting images are more useful for
understanding the lunar surface.

Fig. 5 shows (left) a PANGU sample which is then
processed by our trained image translation network
to appear more realistic (right). Upon visual in-
spection we observe that craters themselves are pre-
served, but appear more realistically “textured” in
the synthesised result. Note that these are 416×416
samples as prepared in Sec. 3.3, not full-size tiles as
in Fig. 2.

Fig. 6 then shows (middle) the crater segmentation
mask predicted from an input LROC image (left)
when the U-Net model (Sec. 3.4) is only trained with
PANGU images, as opposed to the predicted seg-
mentation when U-Net is trained with our sim-to-
real transfer applied to all training examples (right).
As can be seen, the model is better at identifying
craters, with large craters more closely following the
true outline (e.g. the top right round crater in par-
ticular – with PANGU-only models predicting falsely
a pair of craters) and, crucially, a much more com-
prehensive capture of the small craters.

Table 1: Crater detection performance metrics
when training on simulated (PANGU) or synthesised
(PANGU2LROC) data.

Method → PANGU PANGU2LROC (Ours)

Accuracy [%] ↑ 89.59 92.53
F1 [%] ↑ 15.29 23.31
IoU [%] ↑ 8.46 13.81
Precision [%] ↑ 12.71 22.09
Recall [%] ↑ 28.41 33.13
Specificity [%] ↑ 92.47 95.37

Tab. 1 lists quantitative segmentation performance
metrics to support the qualitative proof of the ad-
vantage of our method in Fig. 6. These are averaged
over the 1000-image validation set, see Sec. 4. We ob-
serve improvements in all performance metrics, indi-
cating that our sim-to-real transfer produces images
more useful for training crater detection models than
simulation alone.

6. CONCLUSION

We have presented a system for closing the realism
gap for rendered images from planetary simulators.
We have proved the fidelity of its outputs by im-
proving the training of a downstream lunar crater
segmentation model. This system will in the future
be useful for more robust in-simulator testing of lu-
nar operations, presenting autonomous and other-
wise tasks with more realistic lunar data and scenar-
ios.
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