

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870377.

Kinetic Impactor Technique: Benchmark and Validation Studies with iSALE and SPH

Near Earth Object Modelling And Payloads for Protection

> R. Luther, S.D. Raducan, M. Jutzi, K. Wünnemann, P. Michel, Y. Zhang, D. Koschny, T.M. Davison, G.S. Collins 28.04.2021

DART & Hera: Benchmark and Validation Studies with iSALE and SPH

- Objective: relate observed orbital change with momentum enhancement and crater morphology for given material properties (low strength regime)
- Shock physics codes simulate different materials; prove accuracy by:
 - \rightarrow validation against experiments
 - → benchmarking codes (iSALE & SPH)

Laboratory Experiments of Impacts into Regolith Simulant & Glass Beads

Experimental Setup:

- Chourey et al. 2020, PSS:
 - v~1-3 km/s
 - target materials:
 - glass beads
 - quartz sand
 - regolith simulant
 - formation of ejecta curtain
 - crater size
 - momentum
 enhancement

Laboratory Experiments of Impacts into Regolith Simulant & Glass Beads

Experimental Setup:

- Chourey et al. 2020, PSS:
 - v~1-3 km/s
 - target materials:
 - glass beads
 - quartz sand
 - regolith simulant
 - formation of ejecta curtain
 - crater size
 - momentum
 enhancement

Validation Tests of Impacts into Regolith Simulant: Crater Diameter

- similar material models & parameters for iSALE-2D and SPH
- both codes agree with experimental data
- some deviation towards faster impact velocity between codes

v = 2.2 km/s, m = 24 mg (PVC), regolith simulant (experiment: Chourey et al. 2020, PSS)

Strength model	Lundborg, Y_0 =1.4 kPa, f=0.77
Porosity model	ε-α-model (iSALE), κ =0.96
Ф=42%	P- α -model (SPH), P_e =100 Pa, P_s =1.5 GPa

Validation Tests of Impacts into Regolith Simulant: Crater Diameter

- similar material models & parameters for iSALE-2D and SPH
- both codes agree with experimental data
- some deviation towards faster impact velocity between codes

v = 2.2 km/s, m = 24 mg (PVC), regolith simulant (experiment: Chourey et al. 2020, PSS)

. . ^b	RNATUR			
u	für Natur MUSEUM FÜR	CINIS	пп	Imperial College
6 UNIVERSITÄT BERN	BERLIN			

Strength model	Lundborg, Y_0 =1.4 kPa, f=0.77
Porosity model	ε-α-model (iSALE), κ =0.96
Ф=42%	P- α -model (SPH), P_e =100 Pa, P_s =1.5 GPa

Validation Tests of Impacts into Regolith Simulant: Crater Diameter

- similar material models & parameters for iSALE-2D and SPH
- both codes agree with experimental data
- some deviation towards faster impact velocity between codes

v = 2.2 km/s, m = 24 mg (PVC), regolith simulant (experiment: Chourey et al. 2020, PSS)

Strength model	Lundborg, Y_0 =1.4 kPa, f=0.77
Porosity model	ε-α-model (iSALE), κ =0.96
Ф=42%	P- α -model (SPH), P_e =100 Pa, P_s =1.5 GPa

Validation Tests of Impacts into Regolith Simulant: Momentum Enhancement

- similar material models & parameters for iSALE-2D and SPH
- both codes agree with experimental data
- results from both codes agree with each other

Benchmark study of DART-like Vertical Impacts on Regolith Targets

- Similar material models for iSALE-2D and SPH
- results from both codes agree with each other for a range of material parameters
 some deviations occur for small porosities (Y₀=1 kPa & 100 kPa) and at 50% (Y₀=10

UNIVERSITÄ

Benchmark study of DART-like Vertical Impacts on Regolith Targets

- Similar material models for iSALE-2D and SPH
- results from both codes agree with each other for a range of material parameters
 some deviations occur for small porosities (Y₀=1 kPa & 100 kPa) and at 50% (Y₀=10

kPa)

UNIVERSITÄ

Benchmark study of DART-like Vertical Impacts on Regolith Targets

College

- Similar material models for iSALE-2D and SPH
- results from both codes agree with each other for a range of material parameters
 some deviations occur for small porosities (Y₀=1 kPa & 100 kPa) and at 50% (Y₀=10

kPa)

UNIVERSITÄ

Senchmark study of DART-like Vertical Impacts on Regolith Targets

erial College

- Similar material models for iSALE-2D and SPH
- results from both codes agree with each other for a range of material parameters
 some deviations occur for small porosities (Y₀=1 kPa & 100 kPa) and at 50% (Y₀=10 kPa)

UNIVERSITÄ

Benchmark study of DART-like Oblique Impacts on Regolith Targets

erial College

- same material models & parameters for iSALE-3D and SPH
 results from both codes agree with each
 - other for all impact angles

UNIVERSITÄ

Benchmark study of DART-like Oblique Impacts on Regolith Targets

College

same material models & parameters for iSALE-3D and SPH
results from both codes agree with each other for all impact angles

UNIVERSITÄ

Benchmark study of DART-like Oblique Impacts on Regolith Targets

College

same material models & parameters for iSALE-3D and SPH
results from both codes agree with each other for all impact angles

UNIVERSITÄ

DART & Hera: Kinetic Impactor Technique

eesa hera

Thank you.

Conclusion

- We have run validation tests in the Hera-relevant low strength regime for iSALE & SPH against experimental results for regolith simulant, including measured values of β
 → both codes agree with independent experimental data in terms of diameter, ejection behaviour and momentum enhancement
- Expanding the **benchmark** to **further materials** (Y_0 =1, 10, 100 kPa, Φ =20-50%) shows **good agreement** between the codes (<23% deviation in β , in agreement to Stickle et al. 2020)
- Deviations for the impact angle scaled momentum between both codes for different **impact angle** are below 9%
- We plan further validations with other materials

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870377.

Thank you.

Near Earth Object Modelling And Payloads for Protection

