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ABSTRACT
This article presents the application of an on-board parameter identification approach using
machine learning techniques to a launch vehicle system during its ascent-flight phase. The
identification framework is based upon sparse regression, compressed sensing and robust control
modelling, and allows for the identification of linear or non-linear equations from measurement
data alone. The results show that the proposed approach is able to successfully identify the
time-varying rotational dynamics of a launch vehicle for nominal and dispersed scenarios.

1 INTRODUCTION

The consolidation of the artificial intelligence (AI) field has resulted in a paradigm shift towards data-
driven machine learning (ML) tools for modelling, design, analysis, verification and validation. There
is much interest in the Space community in using these AI/ML methods with the aim to improve
the performance, robustness and/or capabilities of the current (traditional and advanced) modeling
and design approaches, but there are not yet many feasibility studies, and much less applications to
systems of sufficient fidelity, to guarantee the successful transfer of the AI/ML methods to industrial
operability.
Addressing the aforementioned lack of studies, ESA released in 2020 a call for proposals to study
the use of AI techniques for GNC design, implementation, and verification. This article presents
results from one of the three selected projects referred to in this article as AI4GNC and participated
by Deimos Engenharia (DME, as coordinators), Deimos Space (DMS), INESC-ID, Lund University,
and TASC. Specifically, the article shows the results used to demonstrate the feasibility of a data-
driven ML approach used to identify the most relevant parameters of a launch vehicle during its
atmospheric ascent-flight phase.
The ML technique used is based on sparse regression techniques [1] in conjunction with compressed
sensing, and it allows for the identification of linear or non-linear systems from measurement data
alone. The algorithm exploits sparsity-promoting techniques and machine learning with a library of
possible candidate functions to identify the governing equations of systems characterized by relatively
few non-zero terms.
In a first phase of the AI4GNC project, the one presented in this article, the algorithm is applied to a
simplified model of a launcher during its atmospheric ascent flight (a well-known 2nd order non-linear
transfer function) in order to demonstrate its feasibility, performance, robustness, and shortcomings.
This phase is critical to assess whether the algorithm is capable of being used subsequently for the
non-linear benchmark as well as to gather experience and knowledge on its tuning and on-board
implementation capabilities.
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The aim of this feasibility application is to identify the two most relevant rigid-body rotational
launcher parameters, commonly known as a6 and k1. These parameters are of particular interest to
flight mechanics and control, as they are directly linked to the controllability and stability of the
vehicle. The analysis of the proposed compressed sparse identification approach is presented in
incremental steps of complexity in order to build confidence and gain insight on the process: starting
with the case of constant dynamics, and gradually building up the complexity of the identification
approach by considering a windowing compressed estimation, and finally a real ascent-flight,
time-varying profile for the launcher dynamics.
The layout of the article is as follows. Section 2 presents the ML-based identification approach.
Section 3 describes the simplified launch vehicle simulator used to perform the assessment of the
proposed approach. The verification results are presented in Section 4, and finally, conclusions are
given in Section 5.

2 COMPRESSED SPARSE REGRESSION APPROACH

As aforementioned, the proposed approach combines data-driven sparse regression with compressed
sensing to provide an on-board parameter identification approach. This is done in two main steps:
one for compressing the collected data, and the second where sparse regression is used to perform the
estimation of the chosen parameters. A third step, connected to LFT robust modeling theory, is also
used to provide confidence levels on the estimation as well as augment the capability of the approach
towards on-board uncertainty range estimation.
Consider a dynamical system as given in Eq. (1), where x(t) ∈ ℜ represents the measured variables
of the system at time t (e.g., states and inputs), and the function f is sparse (i.e. it consists of only a
few non-zero terms -which is applicable to many physical systems):

ẋ(t) = f(x(t)) (1)

The main goal of the proposed approach is to identify the dynamics of the function f by only using
time-series data, and be able to achieve this on-board and in real-time.

2.1 Step I - Compressed data collection

The first step consists of collecting time-series data using a series of m discrete snapshots in time
t. Note that it can be obtained directly by measurement from the real system or, for verification and
validation (V&V) purposes, can be emulated to come from real-time simulation of a high-fidelity,
nonlinear model of the system.
In preparation for the subsequent identification step, the time-series data is arranged in matrix form
X ∈ ℜm×n as shown in Eq. (2). Similarly, a matrix of derivatives is formed Ẋ ∈ ℜm×n. This matrix
can be either numerically computed from X or also measured if appropriate sensors are available.

X =


xT(t1)
xT(t2)

...
xT(tm)

 =


x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
... . . . ...

x1(tm) x2(tm) · · · xn(tm)

 (2)

The compressed, or sub-sampled, data Y ∈ ℜp×n can be obtained from the full dataset X as follows:

Y = CX (3)
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where C is an operator that performs the sub-sampling step, with p < m. The choice of C has a direct
effect on the performance of the identification step. In this work, random sub-sampling was chosen
as it has been shown to be effective for compressive sampling of spectrally sparse signals [2].

2.2 Step II - Compressed sparse regression identification

In this second step, the function f is approximated as a linear model of possible candidate functions
Θ(Y) ∈ ℜp×q and a matrix Ξ ∈ ℜq×n, see Eq. (4), and a sparse regression optimization is used to
identify the best candidate functions that fit the compressed-data from the previous step.

f(Y) ≈
q∑

k=1

θk(y
T)ξk = Θ(Y)Ξ (4)

The library Θ(Y) contains q column vectors, each representing a possible term in the governing
equations to be identified. These candidates can be constant, polynomial and/or trigonometric
functions of the compressed-data matrix Y from Eq. (3). There is no systematic approach to define
the best library of candidate functions, but it is recommended that they are selected based on the
physical dependency of the system. With respect to the matrix Ξ, each of its columns represents a
sparse vector ξk ∈ ℜn formed by those coefficients in the right-hand side of Eq. (1) which are active.
Then, the dynamical system may be represented as an overdetermined linear regression problem for
learning the governing equations, see Eq. (5):

Ẏ = Θ(Y)Ξ (5)

The unknown coefficients in matrix Ξ can be obtained by penalizing the number of non-zero terms
in the dynamics using an optimization problem solved by convex ℓ1-regularized sparse regression.
This is shown in Eq. (6), where λ is a sparsity-promoting regularization weight chosen by simple
hyper-parameter tuning:

ξk = argmin
ξ′k

∥Ẏk −Θ(Yk)ξ
′
k∥2 + λ∥ξ′k∥1 (6)

Possible sparse regression algorithms are: lasso [3], sparse relaxed regularized regression [4], and
step-wise sparse regression [5]. In this work, the SINDy method is used, which achieves sparsity by
using a sequential thresholding least squares (STLS) algorithm [1]. The latter is an iterative
algorithm that performs least-square regression while simultaneously thresholding those parameters
smaller than a defined cut-off value (given by the parameter λ). This process of regression and
thresholding is repeated until convergence.

2.3 Step III - Connection with LFT theory

A third step is included in the proposed approach with the two-fold aim of: (1) providing a confidence
range for the parameter estimation, and (2) extend the identification capability of the approach.
The first aim is for practical reasons since in non-purely academic examples, perfect identification of
a parameter is hampered by many sources of error, uncertainty and/or issues such as delay, saturation,
and signal quantification. Thus, for systems with wide dynamical variation, it is required to have a
quantitative measure on the confidence of the estimation. The second aim follows the first in that once
confidence bands have been defined, then the approach can be used to identify the associated level of
uncertainty –which can be helpful to modify the robustness of the closed-loop system. In both aims,
it is proposed to use an (offline) LFT model of the system.
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LFT theory [6] is a well-established and suitable approach to model system uncertainties (e.g.,
parametric system variations, non-modelled dynamics, uncertain time delays, actuator and sensor
nonlinearities). The LFT representation naturally fits inside the wider robust control framework
which, among other things, can provide analytical guarantees over the stability and performance of a
closed-loop system in the presence of uncertainties.
In the proposed approach, an LFT model of the system is developed offline using a grey-box
approach [7], which combines first-principle analytical equations with simulation-based data-fitting.
This LFT model serves to obtain the confidence range of the first aim (by perturbing its uncertain
parameters randomly and/or to extreme combinations), but it also can be uploaded on-board to then
generate a residual signal with respect to the onboard estimated parameter value, and thus provide a
quantitative way to identify the level of uncertainty.
A general uncertainty model for a parameter a is given in Eq. (7), where a0 represents its nominal
value, σa the known level of uncertainty, and δa is an unknown but norm-bounded constrained
uncertainty flag (∥δa∥ ≤ 1).

a = a0(1 + σaδa) (7)

If the proposed identification approach is applied to the system in (1), an estimate â of the parameter is
obtained. If this value lies within the known range σa of a0, then there is confidence that the onboard
estimate is adequate (and if it is beyond the range, that possibly another factor is at play such as faults
or strong wind effects not accounted in the LFT modelling). Further, if the range σa is sufficiently
large, then the δa value can be identified and used to provide a rough estimate on the uncertainty
region at that instance (e.g. within [0− 30]%, [30− 60]%, [60− 100]% of |σa|).

3 SIMPLIFIED ASCENT-FLIGHT LAUNCH VEHICLE SIMULATOR

This section describes the simplified single-axis simulator developed by TASC to support the
assessment of the identification approach described in Section 2. The simulator is implemented in
Matlab/Simulink using generic Simulink blocks and specific blocks from the control system toolbox.
Figure 1 shows a diagram of the simulator that contains guidance, navigation and control functions
as well as TVC actuator and launch vehicle dynamics.

Figure 1: Simulink diagram of simplified launch vehicle simulator

The control function is a standard proportional-derivative controller designed using the guidelines
from reference [8]. It is noted that a discrete pseudo-derivative filter is employed to compute the
attitude rate error signal θ̇e. The navigation function adds white noise to the attitude measurements,
whereas the guidance function is implemented as an open-loop look-up table that provides attitude
references for an ascent-flight trajectory with initial vertical-flight phase and subsequent pitch-over
manoeuvre.
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The TVC actuator is characterized as a second-order transfer function with additive white noise. The
launch vehicle model is described with the simplified single-axis rotational dynamics given in Eq. 8.
This model consists of two parameters: the aerodynamic instability coefficient a6 and the control
efficiency parameter k1. These two parameters determine the main rotational rigid-body motion
dynamics of the vehicle between the attitude angle θ and the nozzle deflection angle βθ. These two
parameters are generally used in a linear fashion to represent the rotational dynamics of the vehicle
for design and modelling as they are linked to the controllability and stability of the vehicle as shown
in [9]. In addition, it is standard in industrial launcher mission preparation to start with this rotational
relation for attitude control design purposes [10]. Nonetheless, it is important to remark that they
capture the nonlinear dynamics due to key system variables (such as aerodynamics, thrust profile and
vehicle’s moment of inertia) captured within the equation’s parameters.

GLV (s) =
k1

s2 − a6
(8)

4 RESULTS

The analysis of the compressed sparse identification approach was carried out through three
incremental steps. First, a preliminary sparse identification is performed using constant launch
vehicle dynamics (Section 4.1), that is, constant a6 and k1. This is followed by two windowed
compressed runs, one with constant dynamics (Section 4.2), and another one with time-varying
dynamics extracted from a real launch vehicle ascent-flight profile (Section 4.3).

4.1 Compressed sparse regression identification for constant dynamics

This section applies the identification approach described in Section 2 to a launch vehicle system with
fixed rotational dynamics throughout its ascent flight with the following system parameters: a6 = 2
and k1 = −7. The reference trajectory consists of a standard attitude ascent-flight profile with initial
vertical-flight phase and subsequent pitch-over manoeuvre.
The compressed sparse identification procedure is shown schematically in Fig. 2. The first step
consists of collecting the full-data set CX as described in Section 2.1. To this end, the time-series data
of the main system variables (nozzle deflection angle βθ, attitude θ and its derivative θ̇) are collected
using the simulator described in Section 3. It is noted that the measurements are compressed by
means of random sub-sampling. In particular, a compression factor (i.e. decimation) of 3 is used,
which means keeping only one third of all the samples in the data set. The compressed data is then
arranged in a large data matrix CX = C[θ θ̇ βθ]

T and in the corresponding derivative matrix CẊ ,
where each row is a discrete snapshot of the data in time.
The second step (see Section 2.2) involves providing a library Θ of candidate functions in CX , each
representing a possible term in the governing equations to be identified. It is recommended to select
the library Θ(CX ) based on the knowledge and physical insight of the system, but in this case for the
sake of demonstration it is assumed that the dynamics are unknown. Thus, a space of polynomials
in CX is selected up to second order, that is, Θ(CX ) = C[1 θ θ̇ βθ θ2 θθ̇ θβθ θ̇2 θ̇βθ β2

θ ]. Then, the
compressed sparse identification problem can be formulated as in Eq. 5, see Fig. 2. Subsequently, the
unknown coefficients in matrix Ξ are solved via sparse regression using the STLS algorithm [1].
The results of the identification approach are illustrated in Fig. 2, see matrix Ξ. The sparse
identification algorithm correctly identifies the dynamics of the system (i.e. a6 = 2 and k1 = −7). It
is interesting to observe that the matrix Ξ is sparse in the space of possible functions (i.e. there are
only a few non-zero terms governing the physical equations). Also, it is noted that the same good
results were obtained for different actuator and sensor noise seeds, showing that for this case, the
identification process is insensitive to the stochastic nature of the system.
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Figure 2: Schematic of compressed sparse regression for a launch vehicle with constant dynamics

4.2 Windowed compressed sparse regression identification for constant dynamics

The above system identification case showed that the compressed sparse algorithm works properly
when the governing equations can be formulated in terms of polynomial candidate functions and
the system has time-invariant constant coefficients. This is in good agreement with the algorithm
performance presented in [1, 11].
However, most dynamical systems operate for a wide variation of their parameters, e.g. launch
vehicles mass-center of gravity-inertia (MCI) changes during ascent and descent phase due to the
fast and large propellant consumption. Thus, in order to deal with large and/or rapid parameters’
variation for non-constant (i.e. time-varying) systems, the proposed estimation must be performed
using time-series windowing as in [12]. That is, the data collection step structures the data in
windows of Nw samples so the identification step can be applied to each window and sequentially
cover the full operational domain.
The selection of the window length arises in practice as a trade-off between the number of samples
Nw and the estimation accuracy. On the one hand, the window length shall be selected to ensure that
the variability of the system parameters is not very high, otherwise the sparse identification would
fail to find a suitable function f to match the dynamics of the windowed data. On the other hand,
the sparse algorithms may fail if the window length is too small due to the lack of enough samples to
solve the compressed sparse regression. This is a critical issue when data is compressed, since a data
window that is too small will mean that an insufficient number of samples are used for the subsequent
sparse regression identification step.
In order to build confidence on the approach, the windowed compressed sparse identification
algorithm is applied in this subsection to the previous constant dynamics case, but dividing the
ascent-flight phase data into 70 windows of 1 s length.
Figure 3 shows the results of the windowed compressed sparse regression approach for 20 random
seed simulations (this is done to analyse the stochastic effect of the noise generators). It is noted that
the randomization here affects the actuator and sensor noise generators as well as the random sub-
sampling process. Nonetheless, the results show that the windowed identification algorithm is also
able to correctly identify the constant rotational dynamics. Specifically, the flight parameters obtained
present less than 1% of error with respect to the ground truth.
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Figure 3: Windowed compressed sparse regression results for constant dynamics: nominal case

The same approach was also applied to a constant dynamics case but with uncertain parameters (e.g.
σa6 = σk1 = 0.25). Figure 4 shows the results of the identification algorithm using three different
uncertain configurations: nominal with all the defined uncertain parameters (# = a6, k1) set to their
nominal values (i.e. δ# = 0) and two vertex cases with all the parameters set to their maximum and
minimum values (i.e. δ# = 1 and δ# = −1, respectively). As before, the windowed identification
is repeated 20 times for each random seed simulation. It is clear from the results that the proposed
identification approach allows identifying the uncertainty range of the parameters with less than 1%
of error with respect to the ground truth.
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Figure 4: Windowed compressed sparse regression results for constant dynamics: dispersed cases
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4.3 Windowed compressed sparse regression identification for nominal time-varying dynamics

This section presents the evaluation of the proposed windowed compressed sparse identification
approach using a real time-varying rotational profile extracted from the atmospheric ascent-flight of
the VEGA launcher VV05 mission [13]. The rapid time variation of the rotational parameters during
the atmospheric flight is illustrated in Fig. 6.

Figure 5: VEGA VV05 mission rigid-body rotational parameters [13]

The launch vehicle plant is implemented as a linear parameter-varying (LPV) model in order to
encapsulate the time-varying nature of the system. Due to the dynamic change of the flight
parameters, the estimation is performed using a window of 0.3 s.
Similarly to the case presented in Section 4.2, the windowed compressed sparse regression results are
applied to 20 random seed simulations, see Fig. 6. It can be seen that in all the cases the windowed
estimation algorithm correctly identifies the time-varying dynamics of the system.
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Figure 6: Windowed compressed sparse regression results for time-varying dynamics: nominal case
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In a second test, the uncertainty behaviour shown in Fig. 7 is used to perturb the rotational dynamics.
The results are shown in Fig. 8 for the three uncertain configurations used before, nominal and
two vertex cases (i.e. δ# = 1 and δ# = −1), and the 20 random-seed campaign. As before, the
identification is quite accurate for each of the uncertainty cases. It is worth noting that the results in
Fig. 8 can be connected to the offline LFT model via the uncertainty norm-bounded parameters δa6
and δk1 , which can be used to develop an onboard uncertainty identification approach.
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Figure 7: VEGA VV05 mission: uncertain rigid-body rotational parameters profile
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Figure 8: Windowed compressed sparse regression results for time-varying dynamics: uncertain cases
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5 CONCLUSIONS

This article demonstrates the application and feasibility of on-board system parameter identification
approach developed based on machine learning techniques (compressed sparse regression) and
robust control modelling (linear fractional transformation). The approach was applied to a simplified
ascent-flight launch vehicle simulator for the identification of two rigid-body rotational parameters:
a6 and k1. The identification process was conducted in an incremental manner to gain insight into
the proposed process, starting with a constant dynamics case and gradually increasing the launch
vehicle complexity as well as that of the identification approach.
The results show that the proposed windowed compressed sparse identification approach can correctly
identify the time-varying linear dynamics of a launch vehicle in both nominal and dispersed scenarios.
These results were connected to robust control via an off-line LFT modelling, which allows to perform
uncertainty level identification. This information could be very valuable on-board, since it allows
to determine whether a system parameter is within the modelled uncertainty range and if not, then
possibly trigger control reconfiguration functionalities to ameliorate the larger uncertainty impact.
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