

Reference:

A. Coello-Vera, *Lead-free Transition for the European Space Sector (LETTERSS): a new EU-funded R&D project,* 5th ESA REACH Workshop, ESA ESTEC, Noordwijk, the Netherlands, 19th June 2024

Author affiliation:

A. Coello-Vera, Senior Advisor, REACHLaw

Disclaimer:

Please note that all the information within is FYI and does not represent the opinion of the Agency, unless stated otherwise. The materials may be downloaded, reproduced, distributed and/or used, totally or in part, provided that (i) the user acknowledges that the organisers and the presenters accept no responsibility and/or liability for any use made of the information; (ii) the user does not alter the integrity (underlying meaning / message(s)) of the information; and (iii) the author(s) is (are) acknowledged as the source: "Source: [insert author(s) and affiliation, 5th ESA REACH Workshop 2024]". In addition (iv) users shall comply with any additional referencing requirements (prior approval / consent, mode of quotation, etc.) as may be stated in the individual presentations. In case of doubt, please contact the author(s) of the presentation. For more information link to the workshop webpage: https://atpi.eventsair.com/esa-5th-reach-workshop

REACHLAW

COMPLIANCE. SUSTAINABILITY.

5th ESA REACH Workshop - 19th June 2024 ESTEC, Noordwijk, the Netherlands

Lead-free Transition for the European Space Sector (LETTERSS): a new EU-funded R&D project

Agustin Coello-Vera, Senior Advisor

www.reachlaw.fi

Content:

1. Background

- 2. LETTERSS Project
- 3. Main results expected

LETTERSS BACKGROUND

- **2003**: The RoHS directive was approved and took effect on 1 July 2006. The Space Industry was 'Out of Scope'
- **2006-2018**:
 - The European Space Sector (TESS) understood there could be an obsolescence risk for leaded solder paste.
 - In addition the strong and growing interest in COTS, where the finishes are Pb-free, added urgency for TESS to act.
 - But the actions were uncoordinated and the budgets wholly insufficient, many were waiting for others to solve the problem and then use the results
- 2018: Inclusion of Pb-metal in the REACH Candidate List of SVHCs for Authorisation and here the Space Industry has to comply

LETTERSS BACKGROUND

- 2018: TESS finally addressed the issue at the SCSB, and agreed that a coordinated approach was needed. It launched a Task Force with the mission of delivering a consensual Roadmap for the Lead Free Transition for TESS. All TESS stakeholders were represented including an EDA observer.
- 2018-2020: The Task Force delivered the Roadmap which was widely distributed to all funding bodies, including the EC.
- **2020-2023**:
 - ESA, CNES, and perhaps others, funded some activities with small budgets vs. the estimated cost for the transition.
 - The EC retained the subject in the 2022 Horizon call, but no projects retained, and then again in 2023 when LETTERS was retained and funded.

Content:

- 1. Background
- 2. LETTERSS Project
- 3. Main results expected

LETTERSS PROJECT ID Card

Funded by the European Union

ACRONYM	LETTERSS
HORIZON EUROPE CALL	HORIZON-CL4-2023-SPACE601
IMPLEMENTING AGENCY	Health and Digital Executive Agency
FUNDING INSTITUTION	European Commission, EU Space R&D Programme
HORIZON EUROPE SPACE TOPIC	Critical Space Technologies for EU non-dependence
TYPE OF ACTION	RIA
START DATE	01 January 2024
DURATION	36 months
FUNDING	2.7 million €
COORDINATOR	SCALIAN OP
CONSORTIUM	11 Partners

LETTERSS PROJECT Consortium

The Consortium is built around **11 partners from 4 different countries** selected for their high quality and expertise in the field of space-based systems, components procurement and testing and materials research with:

- Two major industrials end-users: ADS-FR and TAS-FR
- Three equipment manufacturers: TESAT, TAS-ES, SODERN
- One service provider in engineering: ALTER
- One electronic test house : HTV
- One research institute : IRT
- One university: TU-DA
- One expert in EU regulations : REACH
- One expert in Project Management : SCALIAN OP

#	Short Name	Participant Organization Name	Coun
1 (COO)	SCALIAN	SCALIAN OP	FR
2	ADS-FR	AIRBUS DEFENCE AND SPACE SAS	FR
3	ALTER	ALTER TECHNOLOGY TUV NORD SAU	ES
4	IRT	IRT ANTOINE DE SAINT EXUPERY	FR
5	SODERN	SODERN SA	FR
6	TAS-FR	THALES ALENIA SPACE FRANCE SAS	FR
7	TAS-ES	THALES ALENIA SPACE ESPANA SA	ES
8	TESAT	TESAT SPACECOM GMBH & CO.KG	DE
9	TU-DA	TECHNISCHE UNIVERSITAT DARMSTADT	DE
10	HTV	HTV CONSERVATION GMBH	DE
11	REACH	REACHLaw	FI

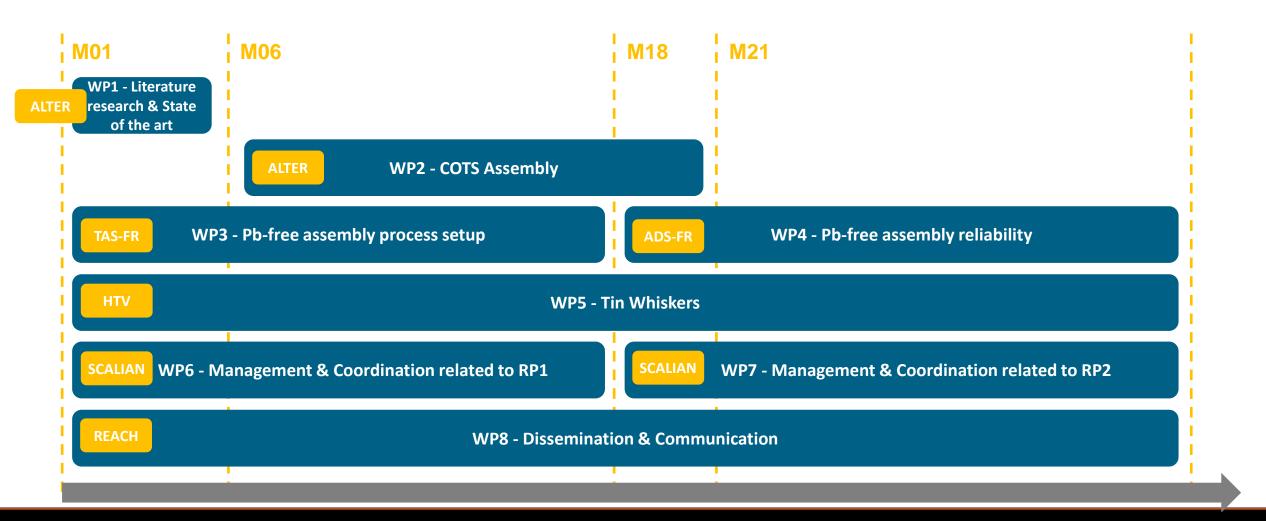
LETTERSS PROJECT Advisory Board

- The project also established an Advisory Board.
- The Board is composed by other Space stakeholders, mainly Space Agencies, which complete the overall project vision and aims, providing guidance as needed.
- Their support will be instrumental for a wide acceptability of the results of the Project.

EEAB	Advisory Expert	
ESA	Gianni COROCHER	
CNES	Pierre ROUMANILLE	
DLR	Hans-Dieter HERRMANN	
EDA	Benoit MICHEL	Discussion ongoing
JAXA	Suzuki KOICHI	

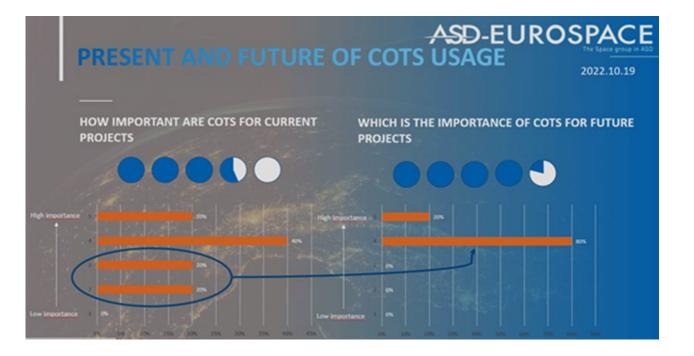
LETTERSS PROJECT Objectives

Objectives:


- Find solutions to the issues that slow down using COTS with existing SnPb Assembly Technology (WP2)
- Finding and validating suitable replacement(s) for the SnPb solder, workhorse of the Space Electrical Assembly for 60 years (WPs 3 and 4)
- Reducing the risks of the Pb-free transition by advancing the state-of-the- art in our understanding of Tin-whisker formation and growth. (WP5)

LETTERSS PROJECT Project Organization

www.reachlaw.fi Page 10


Content:

- 1. Background
- 2. LETTERSS Project
- 3. Main results expected

Work Package 2, COTS Assembly

- The results from this Workpackage will have the most short term impact with wide exploitation expected
- Main challenge will be to find broad agreement that the data (available or generated in LETTERS) for a given lead finish is sufficient to implement the necessary update of the relevant ESCC/ECSS standards. The Advisory Board will be contributory on this

Work Packages 3 & 4, Pb-free assembly

- These WPs represent the core of the Project and its results will have the most impact in the European Space Sector
- Key challenges will include test vehicle and test plan designs.
- The most important result will include the understanding of the behaviour, degradation and failure mechanisms of the solder alloys in the operative environment for space applications. This has not been published yet.

Work Package 5, Whisker formation and growth

- There is no consensus within the Space Sector on the risk due to whiskers. Some people think that today the risk is low/acceptable while others don't agree. It also depends on the type of program.
- The debate is not settled since we do not know the activation energies in order to design accelerated tests that will help to close the debate.
- There was a lot of research in 2000-2010 when most industrial sectors transitioned to Pb-free. Today only Space and other HiRel sectors are interested.
- LETTERS aims to advance our understanding on the whisker formation and growth in order to establish an accelerated test approach for whiskers formation in space application.

Work Package 5, Whisker formation and growth

Time	Product	Accident	
1986	F15 fighter radar	Mixed package short circuit	
1988, 1992	US missile	Short circuit	
1989	Phoenix air-to-air missile	Mixed package short circuit	
1998, 2000	Galaxy VII (Pan American satellite)	MOD10 relay failure	
1998	Galaxy IV (Pan American satellite)	Master computer failure	
1998, 2002	HS601 satellite	Short circuit	
1999, 2000	Solidaridad I satellite	Relay failure	
2000	Patriot II missile	Pins short circuit	
2000	Mexican satellite	Communication interruption	
2001, 2006	Galaxy III R satellite	Relay failure	
2001	Rocket engine ignition device	Short circuited with shell and cause explosion	
2002	Direc TV3 satellite	Processor failure	
2002	Boeing satellite Processor failure		
2002	Military aircraft	Relay failure	
2003	GPS enclosure	System failure	
2005	OPTUS B1	System failure	
2006	Space shuttle engine	Orbital deviation	
2007-2010	Rocket armor piercing projectile	Control system short circuit	
2013	Boeing 787 Dreamliner	Lithium-ion battery fire	
2014	SpaceX Falcon 9	Explosions	
2019	Galaxy Note7 mobile	Battery explosion	

'Formation and evolution mechanism of metal whiskers in extreme aerospace environments: A review' Zekun WANGa,b, Shiming WANG, Chinese Journal of Aeronautics, (2023), 36(9): 1–13

https://letterssproject.eu/

ABOUT EVENTS RESOURCES CONTACT

WELCOME TO LETTERSS PROJECT

Lead-free transition for the european space sector

More

REACH**LAW**

www.reachlaw.fi Page 16

Funded by the European Union

HORIZON EUROPA CALL: HORIZON-CL4-2023-SPACE-01

• CONTRACT NUMBER: 101135428

REACHLAW

COMPLIANCE. SUSTAINABILITY.

REACHLaw Aleksanterinkatu 19 FI-00100 Helsinki FINLAND

www.reachlaw.fi info@reachlaw.fi AGUSTIN COELLO-VERA Senior Advisor +33 673204152 agustin.coello-vera@reachlaw.fi