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ABSTRACT

Astrodynamics Simulator (AstroSim) is a specialized software tool created by Deimos Space
S.L.U. for the purpose of mission analysis and navigation in small-body environments. Through
extensive validation against Commercial Off-The-Shelf (COTS) tools, the tool has demonstrated
its reliability. It encompasses a wide array of capabilities, including high-fidelity trajectory prop-
agation, navigation analysis, Image Processing (IP), image rendering, landing simulation with
contact dynamics, Hazard Detection and Avoidance (HDA), and event detection.
The objective of this paper is to provide an overview of the core functionalities and architec-
tural framework of AstroSim. The tool is designed as a modular suite in Python, leveraging the
language’s versatility and Object-Oriented Programming Language (OOP) style to facilitate the
seamless integration of additional functional blocks. The paper also presents the outcomes of a
validation campaign, highlighting the attained levels of accuracy achieved by the tool.
Numerous modules within AstroSim are exemplified in the paper. Among them is the astroHarm
module, which enables the extraction of spherical harmonic coefficients from polyhedral shape
models. Another notable module, astroHda, employs Artificial Intelligence (AI) techniques uti-
lizing Convolutional Neural Network (CNN) to identify hazards during landing simulations, such
as shadows, features, and steep slopes. Additionally, the astroRender module harnesses the capa-
bilities of Blender for image rendering, enabling optical navigation and facilitating the simulation
of landings while accounting for the impact’s contact dynamics.

1 INTRODUCTION

In the last decades, missions to minor celestial bodies have gained importance, brought forward by
missions like Rosetta, OSIRIS-Rex [1], Hayabusa [2], or more recently DART [3]. These missions
are proof that the interest of the space sector in these bodies is growing and that they are becoming
more accessible, aided by the evolution of the technology and autonomous methodologies required.
In order to assist with the analyses needed for the design of these missions, an effort needs to be made
to improve the models used in simulations in such environments. Introducing AstroSim, a cutting-
edge tool designed to accurately model and predict the trajectories of space objects. This software is
developed to meet the demanding needs of mission planners, researchers, and space agencies, offering
exceptional precision and reliability in orbital analysis.
AstroSim provides an extensive range of capabilities. Users can perform orbital propagation for
diverse scenarios, including Earth orbits, interplanetary missions, lunar missions, and more. It offers
flexibility in defining orbital elements, initial conditions, and time frames, allowing for customized
analyses tailored to specific mission requirements.
In addition to precise trajectory predictions, AstroSim enables users to visualize and analyze the
resulting orbital paths in 2D and 3D, facilitating a deeper understanding of mission dynamics. It also
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offers advanced tools for assessing orbital stability, evaluating collision risks, and optimizing mission
planning.
With a focus on accuracy, efficiency, and user-friendliness, AstroSim empowers space professionals
to make informed decisions, optimize mission designs, and ensure the safety and success of space
operations. Whether it’s for satellite deployment, space exploration missions, or scientific research,
the software provides a reliable and indispensable solution for orbital analysis and planning.

2 ARCHITECTURE

AstroSim is a software tool developed at Deimos Space S.L.U. meant to be used for mission analysis
and navigation around small bodies. The tool started as an orbital propagator including the typical
central gravity forces and perturbations to be encountered in small body environments. Gravitational
forces can be modelled with many different methodologies, from simpler implementations, such as
point-mass modelling, to more complex ones like spherical harmonics or polyhedron-based mod-
els. On the other hand, the perturbations included in AstroSim include third-body gravity (unlimited
bodies), and Solar Radiation Pressure (SRP). Third-body gravity models can assign any type of grav-
itational model to each third body in the simulation, which is particularly useful when dealing with
binary systems where the bodies involved are very close to each other. Ephemeris are obtained from
SPICE, which is internally linked to AstroSim by means of SPICE’s Python module [4], but fictitious
bodies can also be defined for specific analyses. SRP models use a conical shadowing model that
considers umbra, penumbra, and even the rare case of antumbra (annular eclipse).
Additionally, to high-fidelity trajectory propagation, AstroSim offers a wide range of capabilities,
such as navigation analysis, IP, image rendering, landing simulation including contact dynamics,
HDA, or event detection. To integrate these functionalities, different Python libraries and third-party
software have been used.
The design of AstroSim follows a modular architecture, allowing the integration of different function-
alities as required. The core of the suite is written in Python, chosen due to the extensive community
resources available and its license-free nature, making it highly adaptable to various environments
where other licenses may not be accessible. Another key factor in selecting Python was its OOP
nature, which aligns well with the envisioned modular design of the suite.
The concept of this tool differs slightly from conventional mission analysis approaches, as all data
regarding propagation, including the propagation itself, is handled within the Spacecraft object class.
This class encompasses the methods used to propagate the spacecraft’s position and attitude. Upon
declaring the spacecraft, a separate object of the DynamicEnvironment class is defined, where dynam-
ics flags associated with the spacecraft are set, along with the corresponding ephemeris information
retrieved from SpiceyPy [4].
Additionally, various instruments, actuators, noise models, and hyper-parameters for performance
configuration can be attached to the spacecraft.
At the core of AstroSim lies an orbital propagator, implemented as a method within the Spacecraft
class. This propagator utilizes Scipy’s numerical integrators as the engine for the propagation. The
default DOP853 numerical integrator employs an explicit Runge-Kutta method of order 8 (5, 3) with
variable time-step propagation and dense output generation for interpolation, ensuring minimal loss
of accuracy (more detailed information can be found at [5]).
Naturally, a dynamics library is necessary to provide the state derivatives for the numerical integrator.
In AstroSim, the implemented dynamics are specifically tailored for small bodies, as they are the most
relevant in such contexts:

• Central body gravity
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1. as point mass,

2. as spherical harmonic model, and

3. as polyhedron model (with constant density).

• SRP

1. ballistic modelling of the spacecraft, and

2. including eclipses

• Third-Body Gravity (TBG)

1. as point mass,

2. as spherical harmonic model, and

3. as polyhedron model (with constant density).

The spherical harmonics and SRP models implemented in AstroSim are based on the formulations
presented in [6]. The polyhedron model, on the other hand, follows the approach described in [7],
and it utilizes the implementation by [8].
In addition to environmental dynamics, AstroSim provides the capability to incorporate artificially-
induced perturbations such as thrusters or Attitude Control System (ACS). Thrusters can be modelled
as instantaneous, impulsive, or continuous accelerations, and they can follow user-defined profiles
with various interpolation schemes. ACS components can also be included in the simulation as at-
titude control devices, allowing the spacecraft to be constrained to follow a given or user-defined
attitude profile, such as nadir-pointing or inertially-fixed.
Event detection is integrated within the numerical integrator of AstroSim. This feature identifies cases
where the propagation needs to be halted in order to reset the derivatives due to abrupt changes in the
non-linearity of the dynamics they induce.
The eclipse detector determines the epoch at which the spacecraft transitions between eclipse, penum-
bra, and umbra states (and vice versa). The algorithm follows a classical conical shadow model, as
described in section 3.4.1 of [6], shown in Figure 1.

Figure 1: Schematics of the conic shadow model used in AstroSim, implemented following [6].
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Another event included in the detector is the collision handler, which operates in two different modes:
reference radius and shape model. In the absence of a shape model for the body causing the potential
collision, a reference radius value is used to check if the spacecraft has reached a specified altitude
relative to the body. If the condition is met, an error is raised to halt the propagation due to the
collision. However, if a shape model is provided, the Laplacian of the polyhedron is computed based
on the spacecraft’s state to determine whether the spacecraft is inside (collision) or outside the shape
model, following the approach explained in [9].
Both event detectors described above employ a refined bisection technique that leverages the interme-
diate steps of the numerical integrator and its dense output to efficiently determine the event epoch.
The remaining event detectors are dedicated to actuators and instruments that can be attached to
the spacecraft object. However, the detection methods for these are relatively straightforward since
manoeuvre commands or sensor activations are time-tagged sequences where only the epoch needs
to be checked, thus allowing full knowledge of the event before it occurs. Consequently, no bisection
is required to determine the event epoch.
All of the aforementioned functionalities have undergone extensive testing against established in-
house tools used at Deimos Space S.L.U. over the past years, yielding successful results. The valida-
tion campaign involved 7-day propagations with each perturbation activated sequentially to prevent
errors from one model from affecting the overall performance of the propagation. Event detection
was also evaluated for eclipse scenarios. The achieved accuracies are presented in section 3.1.1.
The different modules developed for AstroSim are grouped into two categories: flight dynamics and
utilities.

• Flight Dynamics

1. astroCelMec: computes celestial mechanics parameters such as orbital period, or eclipse
state.

2. astroDyn: all the dynamics modelling functions are included here.
3. astroGuid: based on Pyomo [10], configures optimisers to design the guidance trajectory

that the spacecraft will need to follow to get to the chosen landing spot.
4. astroNav: based on filterPy ([11]), collects all the functions needed to implement a naviga-

tion filter. Default configuration includes an Unscented Kalman Filter (UKF), observation
generation and modelling (for range, position, velocity, azimuth and elevation, and Line
of Sight (LoS) observations), or uncertainty propagation, for example.

5. astroTransf : functions needed to perform reference frame and time system transforma-
tions. Supported by SPICE [4].

• Utilities

1. astroEvents: a collection of event handlers used as input to the numeric integrator to detect
an event.

2. astroFile: all the functions that deal with input/output or file modification.
3. astroHarm: independent suite developed following the method by [9] is used to obtain

spherical harmonic coefficients from a given shape model. In [12], the advantages and
limitations of this module are explored.

4. astroHda: this module includes HDA algorithms used for on-board trajectory corrections
based on new information collected as the spacecraft approaches the landing spot. In-
cludes CNN-based techniques for shadow detection, feature detection, and slope estima-
tion.
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5. astroImage: functions having to do with image processing capabilities. OpenCV’s Python
library (more information at [13]) was used to implement some of the capabilities present
in this suite, such as cross-correlation evaluation.

6. astroInit: small module that collects the basic libraries and modules needed within As-
troSim.

7. astroMath: add-on with some specific math functions.

8. astroPerf : design-oriented module that helps to profile the newly included functionalities
to detect memory leaks or inefficiencies.

9. astroPlot: Using [? ], this module is meant to help with problem and analysis representa-
tion.

10. astroRender: module that exploits the capabilities that Blender ([? ]) can provide from its
own Python environment to graphically simulate small body environments. This module
can be used to render images as if they were taken by an optical instrument mounted on
the spacecraft at any point of the simulation or even to simulate the contact dynamics that
would take place upon landing. The work on [14] shows the results obtained using this
module for the Milani CubeSat ([15]).

11. astroVar: module that includes functionalities involving variable manipulation.

12. astroVec: module that includes specific vectorial operations.

The simulation script allows for independent module imports based on specific requirements. How-
ever, certain functions within these modules may have internal dependencies that are automatically
imported when the functions are called. Users only need to import the higher-level functionalities
they require, and the AstroSim system handles the internal dependencies seamlessly.

3 RELEVANT MODULES

3.1 Orbital Propagator

The orbital propagator is one of the core functionalities of AstroSim. It is integrated in the Spacecraft
class and is fully configurable by the user. The orbital propagator leverages the OOP design of the
entire software suite, as it is implemented as a method of the Spacecraft class and fetches config-
uration parameters from the Spacecraft object. This includes essential spacecraft parameters such
as spacecraft mass, coefficient of reflectivity, and the cross-sectional area. The configuration of the
environment is stored in the DynamicEnvironment class and passed to the Spacecraft object, to be
accessed by the orbital propagator. Lastly, the integrator itself is configurable by the user. The inte-
gration method can be selected from any method available in Scipy. Depending on the requirements
of the user, both fixed step-size and variable step-size can be configured, as well as the relative and
absolute tolerances. If no integrator configuration is conducted by the user, the integrator properties
are automatically set depending on the initial state and dynamical environment of the spacecraft.
The propagation method can then be called with a time span to be propagated. During the first call of
the propagation method, the event trackers are initialised depending on the initial state and dynamical
environment. Additionally, the event trackers can be configured to terminate the propagation for
certain conditions, update the derivatives, and restart the propagation to avoid discontinuities. If
a terminal condition occurs, the event data is stored in the Spacecraft object, the derivatives and
event trackers are updated, and the propagation is restarted. The stored data can then be accessed
from outside the propagation method, and further analysis and reports can be generated using the
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event data. On termination of the propagation, the denseOutput object and derivates are stored in the
Spacecraft object.

3.1.1 Validation

AstroSim has recently been validated against COTS mission analysis tools. SPICE [4] and General
Mission Analysis Tool (GMAT) [16] were selected as reference tools due to their extensive validation
and flight heritage [17, 18, 19]. An exhaustive validation campaign was performed, where the dif-
ferent dynamical models were independently tested using 100 random initial states and propagating
them for seven days under different perturbations.
In order to automate the validation process, an additional module, astroValidate, has been imple-
mented. It ensures that both AstroSim and the baseline tool use the same initial states and dynamical
configuration. The dynamical environment, integrator configuration, and the baseline tool are defined
by the user. Initial states can either be set explicitly, or generated pseudo-randomly from user-defined
ranges of orbital elements. The configuration of dynamical environment, integrator properties and
initial state are then processed by astroValidate and passed to the tools. After the propagation, as-
troValidate reads the generated outputs and prepares the validation reports and analysis.
Errors after a week of propagation are in the order of micrometers for the Point Mass (PM) gravity
model, in the order of meters for the spherical harmonics and polyhedron-based gravity, and in the
order of millimetres and centimetres for TBG and SRP perturbation models respectively. Table 1 lists
the mean and standard deviation for different dynamical model combinations between AstroSim and
the baseline tool. A fixed step-size of 30 s has been used in all propagations to minimize differences
resulting from the integrator.

Table 1: Final position difference statistics for 100 random initial states after seven days of propaga-
tion.

Model Point Mass (PM) Spherical Harmonics Polyhedral PM + TBG PM + SRP
Baseline SPICE GMAT GMAT GMAT GMAT

Mean [m] 1.52× 10−7 0.409 0.197 6.08× 10−4 1.17× 10−2

Std. Dev. [m] 1.12× 10−7 2.81 1.26 5.45× 10−4 3.88× 10−2

As detailed by Vallado [20], it is not sufficient to assess the performance of the propagator using a sin-
gle state vector after the propagation. This becomes especially apparent when plotting the differences
between flight dynamics tools over time.
Figure 2a shows the difference between the prop2b function of SPICE and AstroSim in the Hill
reference frame [6]. No distinct outliers are apparent.
The behaviour is different for the polyhedron-based gravity model, depicted in Figure 2b. There
are two distinct outliers over the remaining evolutions. As expected, the standard deviation is one
order of magnitude larger than the mean difference between GMAT and AstroSim. Similar behaviour
was found for the spherical harmonics gravity model. The initial states associated to the outliers
were studied in more detail and found to be particularly unstable, due to the relative geometry of the
orbit with respect to the shape of the body. Over the course of seven days of propagation, the orbits
significantly changed in their shape and orientation relative to the central body. Small state differences
are exacerbated by the chaotic nature of the small-body environment.
Overall, a good agreement between AstroSim and other State of the Art (SoA) mission analysis tools
was found. The OOP design and extensive configurability of AstroSim allowed to adapt it and match
it with other tools.
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Figure 2: Position differences for the two different gravity models. The 3-σ environment is plotted in
blue in the background and delimited by the dotted line.
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Figure 3: Example of an arbitrary image, rendered using astroRender, on the left. Intermediate layers
of astroHda in the centre, namely, from left to right columns: target, prediction, and probability mask.
From top to bottom, feature prediction, shadow prediction, and slope estimation. On the right side,
the composed safety map where all hazards are combined to provide a conservative landing map.

3.2 HDA

One of the additional functionalities offered by AstroSim is the incorporation of HDA algorithms
found in the astroHda module. These algorithms utilize CNNs and leverage FastAI and PyTorch
frameworks to construct and train the required networks for three distinct layers: shadow detection,
feature detection, and slope estimation. This three-layered system operates passively, relying solely
on optical observations as input. In contrast, active systems employ instruments like Light Detecting
And Rangings (LIDARs) to estimate surface characteristics such as steepness and roughness. Despite
the inherent challenges of estimating slope solely based on optical observations, the networks within
astroHda demonstrate hazard prediction capabilities (identifying high slopes) with true positive ac-
curacies exceeding 70%.
Figure 3 shows an example of the capabilities that astroHda offers. Using semantic segmentation
techniques, three CNNs were trained to detect features such as boulders or craters, detect shadows,
and estimate slopes. Features and shadows are detected on a yes-no basis, but for slopes, a threshold
is defined to initially classify them as dangerous or safe slopes. This classification is based on the
spacecraft’s design, and its capacity to land under certain terrain conditions. For instance, for the case
exemplified in Figure 3, a threshold of 15 ◦was used.
In the middle section of the figure, three rows are provided, one for each of the HDA layers: feature
detection, shadow detection, and slope estimation (from top to bottom). The three columns corre-
spond to (from left to right) the target (or true mask), the prediction given by the network, and the
certainty with which the network flags the hazards present in the image. Finally, all these layers are
composed to generate what is called a safety map, on the right-most plot of Figure 3. There, a final
representation of the safe and dangerous landing areas on the surface of the body in the image is given,
for the Guidance, Navigation, and Control (GNC) system to select a final landing spot that satisfies
the safety requirements of the mission.
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3.3 Small Celestial Body Landing Simulations

The process of image rendering relies on the utilization of Blender and pyrender. Blender, an open-use
licensed Video Effects (VFX) suite, is widely supported by the community and offers a diverse range
of features. These features encompass 3D modelling, UV unwrapping, texturing, raster graphics
editing, fluid and smoke simulation, particle simulation, soft body simulation, sculpting, rendering,
motion graphics, and compositing, among others. This comprehensive toolset makes Blender highly
appealing for image rendering, as it can generate images that closely resemble the outcomes achieved
by optical payloads.
Pyrender, on the other hand, is a Python module specifically designed for image rendering, often with
significantly faster performance compared to Blender. However, Blender provides additional advan-
tages that can be directly harnessed within a small-body environment simulator. Notably, Blender
incorporates a contact dynamics engine capable of facilitating rigid-body simulations that account for
collisions and deformations. This capability is exploited in AstroSim to conduct contact dynamics
simulations for landing sequences [14].

Figure 4: Horizontal displacement analyses plots for different types of craters [14]. Displacement
corresponds to the horizontal distance travelled by the spacecraft from its initial position on the grid
to the settling position at the end.

Figure 4 shows one of the analyses that can be obtained from the module developed. In it, the horizon-
tal displacement of a particle (spacecraft) from its position on a grid placed above the landing spot to
be studied (in this case a crater). The tool helps understand how different crater morphologies affect
the way a certain spacecraft bounces after the initial touchdown when landing and how the features
of the crater favour certain landing spots as final settling-down areas.
The tool provides a very valuable resource for landing planning, in particular when it comes to un-
controlled landings, as they are typical for CubeSats.
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3.4 Spherical Harmonic Model Coefficients from Shape

Based on the work from [7, 9], a module was developed that computes the coefficients for the spher-
ical harmonics gravitational model of a certain small celestial body from its shape model (usually a
polyhedron). In [12], a more detailed overview is provided, with different analyses and validation
sections for this module, named astroHarm. As it was shown in that work, spherical harmonics simu-
lations offer a lighter computational burden, while keeping the accuracies of the propagation close to
the polyhedral model, when the order and degree of the spherical model are high enough. This bene-
fits on-board processes and helps mission planning strategies since a shape model is usually available
(even if just a rough approximation) before the spacecraft arrives at the target body and orbits it for
some time to estimate the coefficients needed for the spherical model.

Figure 5: Trajectory propagation results for polyhedral and spherical harmonic models, on the left. On
the right-hand side, a quantitative evaluation of the error that lower-order spherical harmonic models
yield with respect to the ”ground truth” trajectory provided by the more accurate polyhedral model
[12].

Figure 5 shows an example of a trajectory propagated using a polyhedral model and a set of trajec-
tories propagated using increasingly higher-order spherical harmonics models. The right-hand side
plot shows how when increasing the order and degree of the spherical harmonic model, propagation
errors vanish, even if the computational effort becomes much lower. This tool is very helpful for
on-board appliccations and can be used to create a catalogue of spherical harmonic coefficients for
any observed body from which a shape model, even if rough, is available.

4 CONCLUSIONS

AstroSim was first presented at the AIAA/ASS SciTech 2022 in San Diego (CA), where a preliminary
version of the suite was introduced. After that, it has been used to produce other conference papers
and publications. In this paper, the main functionalities of the tool are described and its architecture
is showcased.
Firstly, AstroSim is introduced as a modular suite developed in Python, to which different functional
blocks can be easily added by exploiting the language’s high versatility and OOP style. Then, the re-
sults of the validation campaign are included, where the accuracies that the tool is capable of reaching
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are shown in detail.
Examples of the different modules are provided, including astroHarm, a module to obtain the spher-
ical harmonic coefficients from polyhedral shape models; astroHda, an AI-based module that uses
CNN to detect hazards for a landing simulation (such as shadows, features, or high slopes); or as-
troRender, a module that uses Blender to render images that can be used for optical navigation and to
simulate landings accounting for the contact dynamics of the impact.
AstroSim continues to be used within the Mission Analysis and Navigation team at Deimos Space
S.L.U., and new features are added for specific project needs or following the improvements roadmap
devised by the team. Some of these features include the generation of frozen orbits for asteroidal
environments or visibility analysis capabilities, for instance.
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