

Energy Dissipation in Didymos Prior to Hera's Arrival

Alex Meyer, Ioannis Gkolias, Kleomenis Tsiganis, Guillaume Noiset, Özgür Karaterkin, Harrison Agrusa, Jay McMahon, Daniel Scheeres

Planetary Defense Conference April 5, 2023

Introduction

Full 2-Body Problem

$$\ddot{\vec{r}} + 2\vec{\omega}_B \times \dot{\vec{r}} + \dot{\vec{\omega}}_B \times \vec{r} + \vec{\omega}_B \times (\vec{\omega}_B \times \vec{r}) = \mathcal{G}(M_A + M_B)\frac{\partial U}{\partial \vec{r}}$$
$$\mathbf{I}_B \cdot \dot{\vec{\omega}}_B + \vec{\omega}_B \times \mathbf{I}_B \cdot \vec{\omega}_B = -\mathcal{G}M_A M_B \vec{r} \times \frac{\partial U}{\partial \vec{r}}$$

$$U = -\frac{\mathcal{G}M_AM_B}{r} - \frac{\mathcal{G}M_A(A + B + C - 3\Phi)}{2r^3}$$

$$\Phi = \frac{Ax^2 + By^2 + Cz^2}{r^2}$$

Tidal Torque

$$\Gamma_i = -\mathrm{sign}(\omega_i - \omega_{orb}) rac{3}{2} igg(rac{3}{4\kappa
ho_i}igg)^2 rac{GM_A^2 M_B^2}{r^6 R_i} rac{k_i}{Q_i}$$

 $\dot{\phi} = \omega_i - \omega_{orb}.$

1

$$\hat{\Gamma}_i = -rac{\dot{\phi} - (\dot{\phi} \cdot \hat{r})\hat{r}}{|\dot{\phi} - (\dot{\phi} \cdot \hat{r})\hat{r}|}$$

Murray & Dermott, 1999 Vokrouhlický et al, 2007

NPA Rotation

$$\dot{E}_{NPA}=rac{a^4
ho M_B\widetilde{\omega}_B^5}{\mu Q}arPsi$$

 $\kappa = \mathbf{H}_B imes \hat{z}$

$$\widehat{arGamma} = rac{\mathbf{H}_B imes \kappa}{|\mathbf{H}_B imes \kappa|}$$

1

Breiter et al, 2012

Tidal Parameters

No strong constraints: treat as unknowns

Likely range for
$$\frac{Q}{k}$$
: 10³ - 10⁶

Nimmo & Matsuyama, 2019 Goldreich & Sari, 2009

Primary Rotation

Spin Period

Stable Libration

S

 $\dot{a} > \dot{e}$

Tumbling

 \mathbf{G}

-

-

What Will Hera See?

Hera Mission

Key measurements:

Libration Damping

-0.11

1170 1180 1190 1200 a [m]10 15 20 25 30 $\phi \; [^\circ]$ Jacobson et al, 2014

Eccentricity Damping

-7 ^{×10⁻³}

Jacobson et al, 2014 Jacobson & Scheeres, 2011

Hera Mission

Planned 6 month mission

Measurement accuracy (optimistic):

~1 deg libration angle*

~0.1 m separation*

Potential first measurement of small body dissipation

Primary parameters are likely unobservable

More difficult if tumbling

