Tonga Tsunami Provides Data, Verification for Blast-Generated Global Tsunami Modeling

The January 15, 2022 Hunga Tonga-Hunga Ha'apai volcano explosion provided data for impact tsunami modeling verification

Vasily Titov

NOAA Center for Tsunami Research

Pacific Marine Environmental Laboratory

https://nctr.pmel.noaa.gov

The initial atmospheric response to the eruption was captured by Mathew Barlow using NOAA's GOES-West satellite infrared radiance data (band 13). This sequence is based on images taken 10 minutes apart, and colors show the difference in infrared radiance between each time step. Credit: Mathew Barlow/University of Massachusetts Lowell. @MathewABarlow - Environmental, Earth, and Atmospheric Sciences - University of Massachusetts Lowell

Mark Boslough

Earth and Planetary Sciences University of New Mexico Los Alamos National Laboratory

DART records tsunami across the Pacific

Time since EQ (hr)

Asteroid Airburst tsunami models

Comparing Two Types of Tsunamis Generated by Pressure-forcing

Proudman Amplification

Air blast over deep water

Meteo tsunami over shallow water

13 June 2013 meteotsunami event

Tonga tsunami recorded at DART around Pacific

Model inversion results using three DARTs for the January 15, 2022 Tonga volcano-generated event

Tonga Initial DART data inversion Assuming displacement source at the volcano location

Model inversion results using three DARTs for the January 15, 2022 Tonga volcano-generated event

kilometers

Maximum Wave Amplitude

Larger area

A Contraction of the second and the second secon the second s autor was a second where

Wave Amplitude Time: 2001.00

Wave Amplitude (m)

<0.0

00	0.01	0.02	0.03	0.04	0.05
		Data Min = 0.0	0, Max = 0.01		

Larger area

Wave Amplitude

Tsunami Amplitudes

Pacific propagation

Air Pressure Wave (Gaussian dipole)

Tsunami Amplitudes

Pacific propagation

Maximum Computed Tsunami Amplitudes

Maximum Computed Tsunami Amplitudes Caldera-centric source

Pacific propagation

Maximum Computed Tsunami Amplitudes Air-pressure source

Δ

32401

 \mathbf{A}

32401

 $\mathbf{\Delta}$

Global propagation

Data Min = -1.3E+00, Max = 3.5E+00, Mean = 2.9E-03

Proudman Amplification

$$\eta = \frac{c^2 \eta_s}{c^2 - U^2} = \frac{\eta_s}{1 - F^2}$$

0 0.05

0.1 0.15 0.2 m

Global propagation

Global propagation

Maximum Wave Amplitude

Caribbean coastal gages global run

Mediterranean coastal gages

Proudman Amplification for Tonga Explosion

$$\eta = \frac{c^2 \eta_s}{c^2 - U^2} = \frac{\eta_s}{1 - F^2}$$

0.1

Summary

- Global tsunami from Tonga explosion was generated by the air pressure forcing from Lamb waves
- Tonga event generated ample amount of data for model testing and benchmarking
- Lamb wave generation from an asteroid impact may be a missing mechanism for asteroid tsunami risk assessment

Maximum Computed Tsunami Amplitudes

