Cratering processes on rubble-pile asteroids: insights from laboratory experiments and numerical models

S.D. Raducan¹, J. Ormö², M.I. Herreros², K. Wünnemann^{3,4}, Y. Zhang⁶, R. Luther³, C. Hamann³, G.S. Collins⁵, P. Michel⁶ and M. Jutzi¹

¹ Space Research and Planetary Sciences, Physikalisches Institut, University of Bern, Switzerland; ² Centro de Astrobiologia (INTA-CSIC), Torrejon de Ardoz, Spain; ³Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Germany; ⁴ Freie Universität Berlin, Germany; ⁵ Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, UK; ⁶ Université Côte d'Azur, Observatoire de la Côte d'Azur, Laboratoire Lagrange, France.

26-30 April 2021 7th IAA Planetary Defence Conference 2021

DART is a kinetic impactor test

DART = Double Asteroid Redirection Test

- S-type double asteroid system
- YORP asteroids >> low cohesion and high porosity
- Diameter of the secondary: 150-180 m

Target properties

Figure 2: Dimorphos. Source: ESA.

- Cohesive strength not known
- Bulk density/porosity not known
- Internal structure not known

Impact conditions

Figure 3: DART spacecraft. Source: NASA.

- Impact velocity known
- Impact angle not known
- Impactor mass/shape known

Previous work quantifies the effects of various target properties and simple structures (Y $_0$ ${>}100$ Pa)

The DART impact into different targets can produce the same β , but different craters. Both β and crater size/morphology together can be diagnostic of target properties (Raducan et al., 2020).

DART

Figure 4: Crater profiles from iSALE-2D simulations of various targets.

Ryugu, Bennu – both rubble-pile asteroids. Dimorphos also a rubble-pile?

Figure 5: Sketch of asteroid Bennu interior. Source: James Tuttle Keane, Nat. Geosci. vol. 12 (226).

Ryugu, Bennu - both rubble-pile asteroids. Dimorphos also a rubble-pile?

We need to validate our numerical models against laboratory experiments! We need laboratory experiments purposely designed to mimic asteroid surfaces!

Experimental Projectile Impact Chamber (EPIC) - Quarter space experiments into heterogeneous targets

Projectile:

- Delrin (disrupts upon impact), 2 cm diameter, m_p = 5.7 g
- Velocity: ≈ 400 m/s

Target:

- 4 layers of porous ceramic balls embedded in dry beach sand matrix;
- Sand: $\rho = 1.8 \, \text{g/cm}^3$;
- Ball: *d* = 2.25 cm, *m* = 5.7 g, ≈50% porosity.

		Validation	
We used a	SPH to model the EPIC e	xperiment	

T = 0 ms

EPIC experiment

SPH simulation (only slow ejecta)

T = 4 ms

SPH simulation (only slow ejecta)

EPIC experiment START Transr Time 20/12/04 18:06 52 170051 Frame v threshold 18.5 cm Netware Febball 220ba at set delle CD 2107 Res 5000 Thates 100b FOC GX-8

 $T = 10 \, ms$

SPH simulation (only slow ejecta)

 $T = 20 \, ms$

SPH simulation (only slow ejecta)

 $T = 35 \, ms$

SPH simulation (only slow ejecta)

EPIC experiment

	Validation	

Final crater - good match with the experiment

Crater dimensions

Pre-impact level diameter: 20.2 cm Rim diameter: 28.2 cm Depth: 2.9 cm

Figure 6: Final crater morphology (T \approx 0.8 s).

ART Lab experiments Validation DART impact Conclusions

We used SPH to model the EPIC experiment

Boulder distribution - good match with the experiment

Figure 7: Boulder distribution.

DART	Lab experiments		Valida	ation		DART impa	ct	Conclusions
We used SPH to r	model DAR	F-like im	pacts o	n spheri	cal hor	nogeneou	is asteroid	
	9	0° ↓ DART	5)					
After 2h								
		Impactor			Target	-1		
	radius	mass		strength	friction	density		
	(m)	(ka)	(km/s)	(Pa)	J	(ka/m^3)		
	0.5	500	6.0	0	0.6	1620		

DART Lab expe	riments	Validation	DART imp	act Conclusions
DART-like impacts on s	pherical rubble-p	ile asteroids -	- after $pprox$ 2 h	
	a)	DART ↓	b) dart ↓	c) DART ↓
a) Grid-like distribution of 2.	5 m boulders;	3D view	3D view	
c) Random distribution of bc	oulders	DADT	DADT	DADT

 c) Random distribution of boulder between 2 and 10 m.

3D view

 $\beta = 3.32$

3D view

 $\beta = 3.83$

Cratering processes on rubble-pile asteroids: insights from laboratory experiments and numerical models

 $\beta = 4.96$

18 m

3D view

 $\beta = 3.33$

		Conclusions
Conclusions		

- The DART mission may impact a rubble-pile asteroid. We need laboratory experiments purposely designed to mimic asteroid surfaces;
- SPH simulations of impacts into heterogeneous targets show great agreement with laboratory experiment results;
- The DART impact on cohesionless spherical bodies is likely to produce morphologies that are dissimilar to cratering and change the global morphology of the asteroid;
- DART-like impact simulations on rubble-pile asteroids show that both the target morphology and the momentum transfer are affected by the distribution of surface boulders.

			Conclusions
Acknowledgemen	ts		

This project has received funding from the European Union's Horizon 2020 research and innovation programme, NEO-MAPP, under grant agreement No 870377.

JO was supported by grants ESP2014-59789-P, ESP2015-65712-C5-1-R and ESP2017-87676-C5-1-R from the MINECO and FEDER. JO and MIH were supported by the AEI

Project No.MDM-2017-0737 INTA-CSIC and the CSIC support for international cooperation: I-LINK project LINKA20203.