Page-1

CSQ-48 Summary

Question	Knowledge Advancement Objectives	Ob	Observables		Aeasurement	Tools & Models	Policies / Benefits
				F	Requirements		
How can we	A) Thermodynamic coupling of the Earth's	•	Small scale (e.g., 25km	•	High-spatial	High-resolution	CC mitigation and
improve the	surface and the atmosphere to analyze		resolution as discussed in		resolution (e.g.,	models Atmospheric &	adaptation policy
monitoring	critical feedback mechanisms, particularly		Gentemann et al. 2021)		25km)	oceanic & coupled	CC monitoring and
and	for small-scale processes and variations to		measure of latent (e.g., wind	•	High-temporal	assimilation systems	stocktake
understanding	allow for improved weather and climate		speed, air-sea humidity		resolution to	(high-resolution,	Improvements of
of planetary	predictability		difference) and sensible heat		capture from	regional/nested)	weather and climate
heat exchange			flux wind speed, air-sea		extremes to		forecast, CC prediction /
at regional	B) Further develop better weather		temperature difference).		long-term		climate models
scale, and	prediction on short time scales (2–12	•	Near surface air temperature		change (e.g.,		(validation,
which	weeks) aiming for advance warning of	•	Earth surface temperature,		daily)		parametrization,
essential	events such as heat waves and extreme		Sea surface temperature	•	Sustainability to		detection & attribution)
advancements	precipitation, storms and long-term	•	Humidity		improve climate		Disaster risk
can we	weather.	•	Wind (vector winds)		change		management
achieve for		•	total ocean surface currents		monitoring		Early warning systems
research and	C) Study the dynamic coupling for		(e.g., 5km resolution as				Climate and national
monitoring on	improved understanding of momentum		proposed under ODYSEA)				services
weather and	and kinetic energy transfer between	•	Ocean subsurface				
climate	components of the Earth's system (ocean,		temperature				
patterns?	atmosphere, cryosphere, land)	•	Planetary ocean and				
			atmospheric heat transport				
		•	Net radiation				

CSQ-48 Narrative

Regional scale exchanges at the interface between the Earth's surface and the atmosphere are a critical part of the global energy cycle, while fueling weather and climate variability and controlling important feedbacks such as for example through heat and moisture exchange (Bentamy et al., 2017; Cronin et al., 2019; Gulev et al., 2013). Observations at low spatial scale allowing to unlock small-scale processes and variations of the thermodynamic coupling are then key (Gentemann et al., 2021) (Fig. 5a) to allow for predictability from mere days to weeks as these small-scale features can affect large-scale weather and climate (Penny et al., 2019; Saravanan & Chang, 2019). For example, better weather prediction on short time scales (2–12 weeks) provide advance warning of events such as heat waves and extreme precipitation (Vitart & Robertson, 2018; White et al., 2017), which are known to enhance and occur more frequently under global warming (IPCC, 2021), with severe impacts on human systems (IPCC, 2022a). Moreover, small-scale air-sea interactions induce deep atmospheric circulation responses that affect mid-latitude storms and long-term weather (Gentemann et al., 2021). Also, the dynamic coupling of the atmosphere and the Earth surface plays an important role for understanding how momentum and kinetic energy are transferred between components of the Earth's system, such as between the ocean and atmosphere (Zippel et al., 2022) (Fig. 5b). Measurements of wind interactions and surface total currents (vectorial) are then key, which either do not meet WMO sampling requirements (esp. in resolving diurnal scale), or are faced to an observational gap. Beside the need for improved measurement techniques, consistency studies of flux estimates at regional scale have been used for developing reference data sets and uncertainty evaluations (Bentamy et al., 2017), and remain a promising tool for regional energy budget closure approaches, process understanding and uncertainty evaluations (e.g., Loeb et al., 2022; Mayer et al., 2017; Trenberth et al., 2019).

Figure 5: a) Schematic representation of thermodynamic coupling and the role of turbulent fluxes at the air-sea interface. Figure from Genteman et al., 2021. b) Schematic representation of dynamic coupling highlighting surface processes and pathways for kinetic energy (KE) transfer between the atmosphere and the ocean. Dashed lines and solid dots indicate how terms in the vertically integrated mixed-layer turbulent kinetic energy (TKE) equation connect to the atmosphere, the wave-affected layer, the deeper ocean, and the mean kinetic energy (KE) equation. KE fluxes from the wind are split between viscous and wave-driven terms at the interface. The majority of wave-supported energy fluxes balance with terms in the wave-affected layer. Here, the focus is on the balance in the mixed-layer, where surface-driven production and buoyancy are primarily balanced by TKE dissipation rates. From Zippel et al., 2022. c) Schematic of the regional budget constraint approach tackeling the consistency of energy flows through the atmosphere (top) and ocean (below), include radiation at the top and surface RT and Rs, surface sensible heat flux Hs, and surface latent heat flux LE. Latent heat is realized

here in the atmosphere as precipitation LP. The vector transports of total vertically integrated energy in the atmosphere FA and ocean FO are indicated. Figure from Trenberth et al., 2019.