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Science development (A. Illingworth)
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Scientific goals 
WIVERN: A Satellite Providing Global in-cloud Winds, 
Precipitation and Cloud Properties
• Extend lead-time and predictive skills of high-impact weather
• Benchmark for global cloud profile climate records of solid/light precipitation 
• Improve weather and climate model parameterization

• Application areas: 
• Numerical Weather Prediction (NWP) at short to medium range, 

tropical cyclone track prediction, atmospheric reanalysis, (climate) 
model validation, air quality predictions, quantification of Earth’s 
hydrological cycle and energy budget

• Complementarity and continuation of other wind and cloud missions:
• Wind: Aeolus, DWL/Aeolus-2 Doppler wind lidar missions, air 

motion vectors from imagers and sounders, scatterometers, etc.
• Clouds: CloudSat and EarthCARE
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Mission Objectives 

Global 3D in-cloud horizontal wind, cloud and precipitation 
observations
• In-cloud horizontally projected line-of-sight (HLOS) winds (including tropical and 

mid-latitude cyclones), sampling profiles of zonal and meridional wind components
• Detection of convective motion
• Liquid Water Path (LWP) and profiles of  Ice Water Content (IWC)
• Rain rates (experimental product, not driving the mission requirements)

• These advances in observational capabilities will be used to address the WIVERN 
scientific goals (see previous slide), with immediate application and societal 
benefits.

• Recall the large impact of the Aeolus Doppler Wind Lidar and the plans for an 
operational follow-on in 2030 based on user needs/requests e.g. to WMO and CGMS
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Key Mission Requirements, HLOS wind

*For reflectivities above -15 dBZ
**For reflectivities above 0 dBZ, and needed to detect convective motion
*** 650 m vertical sampling currently considered as baseline
• Dynamic range: +/- 150 m/s (TBC) requiring unfolding in on-ground data processing (see slide 10)
• The breakthrough and goal vertical resolution needed for future higher resolution NWP models

• 200 m vertical resolution needed to resolve high wind shear, common in active weather systems
• Use shorter pulse, but unacceptable 8 dB loss of sensitivity?
• NEED TO INVESTIGATE IF THIS CAN BE ACHIEVED USING PULSE COMPRESSION

Random error Systematic error L2 observation 
horizontal 
resolution

L2 
observation 
vertical 
resolution

Vertical domain

Threshold 2 m/s 1 m/s (TBC) 20* km / 1** km 1 km -5 to 20 km altitude
Breakthrough - 0.5 m/s (TBC) - 500*** m -
Goal - - - 200 m -
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Key Mission Requirements, cloud microphysical products

* 650 m vertical sampling currently considered as baseline

• IWC (Ice water content) is derived from radar reflectivity, Z, and temperature, T.
• LWP  (liquid water path)  from 94GHz brightness temperature (noise level of empty radar gates over sea)
• Rain rates 

• Key parameter but challenging from space. CloudSat rainfall data led to changed estimates of Earth’s radiation balance 
by 2 W m-2

• Suggest to derive rain rate from the gradient of Z. Would work over the land as well as the sea. 
• Use pulse compression for more Z samples in the rain
• Current assessment indicate that WIVERN could provide rain rate estimates of 1 mm/hr accuracy per km along track

IWC LWP L2 observation 
horizontal 
resolution

L2 observation 
vertical 
resolution

Vertical domain

Threshold 50% 30 g m-2 1 km 1 km -5 to 20 km altitude
Breakthrough - - 500* m
Goal - -- 200 m
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Key Mission Requirements, timeliness, sampling, and 
key parameters
• TIMELINESS, TEMPORAL AND LOCAL SAMPLING TIME

• < 180 minutes, to be confirmed in parallel science study and based on MAG advice
• Global revisit within 1 – 1.5 days, sun-synchronous dawn/dusk orbit needed to ensure pointing stability?

• KEY LEVEL 1 PRODUCTS
• I and Q data for each radar pulse pair (4kHz) per range for Doppler, power for reflectivity

• 100 m oversampling along slant path, power and frequency per Tx pulse to be recorded
• Reflectivity calibration and correction for molecular attenuation using aux. humidity and pressure data
• Phase correction for satellite motion using precise antenna boresight pointing knowledge

• KEY LEVEL 2 PRODUCTS
• LOS (Line-of-Sight) winds at each range gate for adjustable pre-defined horizontal integration lengths
• HLOS (Horizontally projected Line-of-Sight) winds, LOS wind corrected for terminal velocity of 

precipitation particles
• Ice water content at each gate, liquid water path for the profile, rain rate estimate
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Measurement concept major trade-offs
CONICALLY SCANNING 94GHz DOPPLER RADAR
• 800 km wide ground track –> daily revisit within 1.5 days
• 500 km orbit altitude, with 42° off-zenith angle at the surface
• Optimised to detect a significant component of the horizontal wind 

and a short (600 km) slant range for radar sensitivity
LOW RISK
94GHz radar - high sensitivity: 3 m ∅ antenna (max for VEGA C) 
• Narrow beam (1 mrad): 805 m diameter at the surface
• 3.3μs transmit pulse (500 m slant path resolution), 1700W 
Same EIK specification as successfully used by CloudSat
recommended 

ROTATION SPEED 12 rpm (5 secs)
• For one revolution of the antenna the “cycloid” ground track advances 35 km along the satellite track
• Footprint  moves 500 km/s. PRF 4kHz (every 250 μsec – 37 km) yielding one pulse in the atmosphere at a time
• One radar sample every 125 m along the footprint track, yielding 8 radar reflectivity estimates every km
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Measurement concept trade-offs – global sampling
800km swath 

Forward view

Rear  view

• 1 km radar footprint sampled along 800 km swath by the rotating 
antenna, superposed on a grid of 30 km by 30 km boxes

• Each box on average traversed by one radar footprint track
• WIDER SWATH? Greater range leads to loss of sensitivity for the 

Doppler and a wider beam with  loss of vertical resolution
RESOLUTION OF WIVERN PULSE: 640 m (V)  1080 m (H) 

Improve vertical resolution
with pulse compression?
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Doppler from Space: Polarization Diversity Pulse Pair  
• DOPPLER: Measurement of phase shifts from successive pulses (phase shift is 180 deg if target moves λ/4)
• CHALLENGE FROM SPACE: 94GHz (3.2 mm), λ/4 = 800 um. Folding velocity 40 m/s (i.e. 800 um / 20 us)

• Need 20us pulse separation at 94GHz. Pulse separation only 20 μs or 3 km in space
• PDPP: Polarisation Diversity  Pulse Pair: To distinguish between the returns, label one pulse H the other V

• PDPP system has been tested on radars on the ground in the UK and on an aircraft in Canada
• Performs as predicted by theory
• Cross-talk by depolarizing targets (e.g. ground, melting snow in bright band) leads to “ghost” echoes 3 

km above or below the depolarizing target
• The phase of the ghost is random -> increased random errors but no bias
• Ghost of 10dB > true return => degrade 2 m/s LOS wind to 4 m/s precision (rare events)   

• FOLDING VELOCITY
• Wind statistics (NWP models and Aeolus cloud top winds) show tropospheric HLOS winds up to and 

slightly above 130 m/s
• WIVERN velocity folds at 40 m/s LOS, or 60 m/s HLOS -> one fold will be encountered by WIVERN

• Experience with ground-based radar networks shows unfolding a single fold unproblematic / robust
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System development (M. Tossaint)
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Key System and Payload Specification

• Conical scanning dual polarization pulse pair Doppler radar 94 GHz for multi-view 
direction line-of-sight (LOS) winds, to be projected to the horizontal (HLOS)

• HLOS random error <2 m/s (20 km integration along scan, Z=-15dBZ (incl. 3 dB margin)

• Radiometer channel for liquid water and large ice particles in silent radar intervals
• Noise level 3-5 K integrated over 8 PRIs (~1 km along-scan averaging)

• Orbit altitude ~500km for sensitivity, coverage and lifetime
• Global revisit: approximately daily
• Satellite to be launched in VEGA-C, estimated at ~1.5 ton wet mass incl adapter

• Transmit Peak Power ~1.7kW, pulse duration ~3μs, PRF ~4kHz both H and V (20 us 
pulse separation)

• Antenna aperture size ~3m (limited by fairing and precision)
• Cross polar discrimination < ~30dB for H and V
• Resulting resolution: 640 m H and 1080 m V, Radiometer Bandwidth: 500 MHz (TBC)
• Radiometer sensitivity 3K (on-board and/or NWP model calibration)
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Key technologies
• Mechanical Equipment:

• Rotating antenna, feed, sub-reflector, mechanism and APCE with sufficient precision (30 μm), low 
micro-vibration and thermoelastic deformation for the 94GHz frequency

• Antenna counter rotation mechanism (at low TRL today), if not possible with reaction wheels

• RF Equipment:
• High power amplifiers + power converters (one for each H and V to avoid high power switch) for 

sufficient peak power, low thermal dissipation and lifetime (technology worked > 15yr on CloudSat)
• Rotary joints and switches (at low TRL today)
• High power output isolator with ESA member state supplier
• LNA @ 94GHz (TBC)

• Electronics:
• Onboard processing (incl. range compression TBC)
• RFI Mitigation for radiometer (TBC) due to fact that some systems might operate in 500MHz band (only 

100MHz allocated by ITU)
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Summary and Conclusions

• WIVERN shall improve weather forecasts, extend satellite wind and cloud data records, and improve model 
parameterization 

• HLOS Doppler concept from space already demonstrated by Aeolus, including positive weather forecast impact
• Space-based HLOS Doppler demonstrated by Aeolus and reflectivity profiles by CloudSat
• WIVERN mission requirements being drafted

• To be provided in draft in ITT, and further updates in July 2022 and end Phase 0
• Proposed to use same EIK specifications, and similar PRF, pulse length and peak power as CloudSat
• Propose conical scanning to achieve global coverage in 1.5 days and sampling of zonal and meridional winds
CHALLENGES:

• Rotating antenna need boresight radar pointing knowledge better than 40 μrad (3𝞂𝞂)
• H and V pulses to be fed to rotating antenna with minimal loss (low TRL!)
• Can pulse compression help to achieve the goal vertical resolution?

• Demonstrated by  NASA RainCube mission. Could improve isolation between the H and V returns?
• Calibration of radar reflectivity challenging due to off-nadir viewing geometry, how can this best be done?
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Extra slides for Q&A
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Aircraft Campaign 1
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Aircraft Campaign 2

SEA SURFACE:  45 DEG 30dB LESS THAN AT NADIR LAND – -10dB,    URBAN HIGHER/VARIABLE
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Aircraft Campaign 3

DEPOLARISATION RATIO OF THE 
SURFACE

-15dB at 45 degs

OCEAN SURFACE CROSS SECTION VARIES
WITH RELATIVE WIND DIRECTION
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Further campaigns proposed with Canadian aircraft

• Surface cross section at 45deg  for ice and broken ice.  
• More on land, snow covered surfaces, forests, etc.
• Piggy-back existing NASA/NSF campaign Feb-March 2022

• Implement pulse compression
• How does it perform?
• Better slant path resolution? 
• Improved range sidelobes to suppress the surface return

(Waveform has been designed. Implement in early 2023) 
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