Long Term Shelters to Avoid Humanity Extinction

Jean-Marc Salotti
Univ. Bordeaux, CNRS, Bordeaux INP, INRIA, IMS, UMR 5218, F-33400 Talence, France jean-marc.salotti@ensc.fr

Giant asteroid threat

Long warning time => Moon/mars settlement

Greatest threat: Long period comet

- Size : > 100 km in diameter
- Warning time: 5 years!!!
- Probability: 2.2×10^{-12} for the next century

Environmental impact:

- Giant crater, terrific fireball and air blast.
- Tremendous amounts of "shooting stars"
- Fires everywhere, all around the world.
- Temperatures above $200^{\circ} \mathrm{C}$.
- Oceans boiling.
- Thick dust clouds, sun completely hidden
- All life forms close to surface eliminateds
- Several decades of unlivable conditions
- Slow decrease of temperatures.

Only solution:

Long Term Shelter, waiting decades underground

Minimum human working capacity condition: $\sum_{i=1}^{i=k_{1}} \frac{r\left(a_{1, i}\right)}{s\left(a_{1, i}, n\right)}+\sum_{i=1}^{i=k_{2}} \frac{r\left(a_{2, i}\right)}{s\left(a_{2, i} n\right)}+\sum_{i=1}^{i=k_{3}} \frac{r\left(a_{3, i}\right)}{s\left(a_{3, i} n\right)}+\sum_{i=1}^{i=k_{4}} \frac{r\left(a_{4, i}\right)}{s\left(a_{4, i}, n\right)}+\sum_{i=1}^{i=k_{5}} \frac{r\left(a_{5, i}\right)}{s\left(a_{5, i}, n\right)}<2740 \mathrm{~h}$ Where:

- $r\left(a_{j, i}\right)$ is the individual annual working time requirement to run activity \boldsymbol{i} in domain $\boldsymbol{d}_{\boldsymbol{j}}$.
$-s\left(a_{j, i}, n\right)$ is the sharing factor for activity $\boldsymbol{a}_{\boldsymbol{j}, \boldsymbol{i}}$ with \mathbf{n} the number of individuals (see ref.)
$-k_{1}$ to k_{5} are the number of activities for domains $\boldsymbol{d}_{\mathbf{1}}$ to \boldsymbol{d}_{5}. - 2740 h : available annual working time;

Ref.: Salotti, J. M. Minimum Number of Settlers for Survival on Another Planet. Sci Rep 10, 9700 (2020).
https://doi.org/10.1038/s41598-020-66740-0

Long Term Shelters category A:
Lots of resources, low autonomy
=> limited lifetime => risky
Long Term Shelters category B: Energy, life support, industry,
human resources OK,
But insufficient redundancy
=> will certainly fail
Long term shelters category C:
Triple redundancy principle, including human resources (see equation)
Might be appropriate
Problems:

- Specifications unclear
- No time for tests / simulations
- No time for big excavations and complex systems
\Rightarrow Might be unfeasible

Conclusion:

\Rightarrow High risk of humanity extinction

