

IAA-PDC-23-00-015 Hypothetical Asteroid 2023 PDC Mass Measurement via Doppler Gravimetry in a Reconnaissance Flyby

5 April 2023

2023 Planetary Defense Conference; Vienna Austria; Technical Session 4a: NEO Characterization

Ry Bull¹ (<u>Ry.Bull@jhuapl.edu</u>) Justin Atchison¹, Justin Bradfield¹, James Woodburn²

¹JHU/APL ²AGI

Motivation

- Knowledge of a potentially hazardous asteroid's (PHA's) mass and porosity is critical to predicting impact consequences and/or to plan a mitigation
 - Total kinetic energy of impact, energy lost to the atmosphere, impact effects
 - Momentum required for deflection, effectiveness of deflection, likelihood of disruption
- Only current practical method to measure mass of small PHAs is spacecraft rendezvous
- Highly desirable to be able to measure the mass using a spacecraft flyby
 - More frequent launch opportunities
 - Can arrive at a PHA quicker vs a rendezvous mission

Doppler Gravimetry

- Augment the flyby satellite with one or more deployable CubeSat testmasses
- Host spacecraft tracks test-mass(es) using optical and RF measurements (Doppler and range)
- Test-masses pass by asteroid much closer than the host spacecraft
- More sensitive than the optical-only method (OpGrav)
 - Christensen et al. showed that the mass of <100 m diameter asteroids is measureable if instrument has GRAIL-like Doppler precision
- CubeSat implementation trades some precision for simpler implementation
 - S-band TT&C transponder onboard the CubeSat turns around signal transmitted by host
 - Host compares transmitted frequency and waveform to what is received from the CubeSat to compute Doppler and range
 - Measurement accuracy of < 0.1 mm/s velocity and < 10 m range

Christensen, Lukas, Park, Ryan, Bell, James, 2021. Estimating Asteroid Mass from Optically Tracked Radio Beacons. Journal of Spacecraft and Rockets. https://doi.org/10.2514/1.A34830

2023 Exercise Scenario

- At time of discovery, 2023 PDC has a most likely size range of 220 660 m diameter
 - Probably too small for OpGrav, but good candidate for DopGrav
- Reconnaissance flyby mission launched in October 2024 with asteroid close approach 01 December 2025
 - Relative velocity of 1.7 km/s
- Spacecraft assumptions
 - Small-sat host spacecraft with LORRI/DRACO-like imager
 - 6U CubeSat test-mass with on-board propulsion (similar to LICIACube)
- Host initially targets 1000 km close approach (C/A) distance
- Timeline:
 - C/A 15 days: optical navigation images to the asteroid begin
 - C/A 12 days: test-mass is deployed
 - C/A 5 days: both spacecraft maneuver to target final C/A distances
 - C/A + 7 days: relative tracking ends

Selected Results

- Studied 300 m, 500 m, 800 m diameter asteroids
- All three asteroids are measureable to < 5% mass uncertainty

Asteroid Mean	True GM	Estimated GM	
Diameter (m)	(km³/s²)	1 σ (%)	
300	1.88	2.9	
500	8.73	1.6	
800	35.78	0.4	

APL

Conclusions

- The mass of 2023 PDC is easily measureable if the flyby reconnaissance mission has DopGrav
- Optimistic scenario
 - 2023 PDC is large for an expected near-term PHA
 - The flyby velocity is very slow
 - Generous assumptions of tracking schedule and noise sources
 - Targeting the test-mass close approach is still a challenge
- Next step: target smaller (140 m) asteroid with more test-masses

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

Simulation Setup

- Used Ansys Government Initiative's (AGI's) Orbit Determination Toolkit (ODTK) for simulating and processing measurements
- Covers four weeks before C/A and one week after
- Studied 300 m, 500 m, 800 m diameter asteroid
- Estimates host's and test-mass's position, velocity, & SRP coefficients, maneuvers, updates to asteroid's ephemeris, and asteroid GM

Modality	Schedule
	1 meas per minute continuously
DSN	to available ground station
OpNay	12 meas 3x per day
Opivav	120 meas 3x per day in closest 2 days
OpGray	3 meas every hour
OpGrav	30 meas every hour in closest 2 days
DopGrav	1 meas per minute continuously

Parameter	Value
Host Spacecraft Mass	120 kg
Host Spacecraft Area	5 m ²
Host Spacecraft C_R	1
Test-mass Mass	12 kg
Test-mass Area	1 m ²
Test-mass C_R	1
Host Spacecraft Flyby Radius	50 km
Test-mass Flyby Radius	0.5 km

Close

Nov 29

Nov 29

3/23/2023 20259

Dec 06

Targeting

Maneuvers

Dec 06

2025

Close

Approach

Approach

Ry Bull, JHU/APL Ry.Bull@jhuapl.edu

Nov 25 Nov 28 Dec 01

Elapsed Time (days) 3/23/2023 20250

Nov 22

Dec 04 Dec 07

Close

Nov 29

Nov 29

3/23/2023 20251

Dec 06

Dec 06

2025

Close

Approach

Approach

Ry Bull, JHU/APL Ry.Bull@jhuapl.edu

Ry Bull, JHU/APL Ry.Bull@jhuapl.edu

Dec 04 Dec 07 Elapsed Time (days) 3/23/2023 20252

Close

Approach

Targeting

Maneuvers

Nov 22

Nov 29

Close

Approach

Dec 06

2025

 $3\sigma_{\rm vel_R}$

 $3\sigma_{\mathrm{vel},\mathrm{s}}$

 $3\sigma_{\rm vel}{}_{\rm C}$

 $3\sigma_{\rm vel_{RSS}}$