Page-1

Question	Knowledge Advancement	Geophysical Observables	Measurement	Tools & Models	Policies / Benefits
	Objectives		Requirements		
Can we	A) Identify and delineate the	. Surface displacements on land by	 Long-term trends 	Models of surface	Seismic hazard
observe,	locked versus the creeping	GNSS and satellite imagery	High accuracy	deformations and	assessment and risk
model and	segments of plate boundaries,	 Seafloor displacements 	over all spatial	gravity changes	mitigation
forecast the	and monitor inter-seismic strain	• Gravity to constrain mass changes	scales	associated with slip at	
deformation	accumulation, by accurately		 Multi-satellite 	the plates interface	Emergency planning
processes	measuring the surface		missions with orbit	(back-slip models)	and response
during the	deformations of the plates		inclination choice		
seismic cycle	around major boundaries.		can help to		
at plate			improve the		
boundaries,			gravity recovery		
from pre- to			(this point is valid		
post-seismic			for all the		
phases and			Objectives here).		
during the	B) Document the spatio-	. Surface displacements on land by	 Timescales from 	Models of surface	
inter-seismic	temporal characteristics of	GNSS and satellite imagery	~1 day to 2 years	deformations and	
phase r	transient aseismic events in	Seafloor displacements	High accuracy	gravity changes	
	subduction systems.	 Gravity to constrain mass changes 	over all spatial	associated with slip on	
		 Ground geophysical dataset: 	scales. Mw 6	faults (see below).	
		seismicity	event: ~10x10km		
			fault plane. Mw 7:		
			~30x30km plane.		
			Mw 8: 100's km.		
	C) Document the possible	Surface displacements on land by	Timescales from	Models of surface	
	existence of a short-term	GINSS and satellite imagery	and day to decadal	deformations and	
	preparatory phase for	Seafloor displacements	High accuracy	gravity changes	
	earthquakes.	Gravity to constrain mass changes	over all spatial	faulte and slab	
		Ground geophysical dataset:	scales, including	deformation	
		seismicity	medium scales	deformation.	
			(100's of km) to		

CSQ-36 Summary

		monitor deep	Calculation of stress
		deformations	redistribution
D) Quantify the co-seismic slip	. Surface displacements on land by	• High accuracy over	Models of surface
distribution and discriminate	GNSS and satellite imagery	all spatial scales.	deformations and
between early rupture models.	Seafloor displacements	M _w 5 event:	gravity changes
	Gravity to constrain mass changes	~3x3km fault	associated with slip on
	• Ground geophysical dataset:	plane. M _w 6:	faults. Need to
	seismology, tsunami records from	~10x10km fault	develop models able
	near-coastal pressure gauges and sea	plane. M _w 7:	to account for the 3D
	bottom pressure measurements	~30x30km plane.	structure of plate
		M _w 8: 100's km.	boundary zones (not
		 Coverage on both 	only a radial
		sides of the plate	stratification, also a
		boundaries and	lateral structuration of
		over epicentral	the Earth's physical
		areas.	parameters).
		 Gravity: 1cm 	
		EWH@200km	Calculation of stress
		resolution, monthly =	redistribution
		detection of Mw >	
		7.4 earthquakes.	
E) Assess the relative	• Surface displacements on land by	 Time scales from 	Models: same
contributions of localized vs	GNSS and satellite imagery	weeks to decades	challenge as above to
distributed deformations at	Seafloor displacements		take into account the
depth along the plates interface	Gravity to constrain mass changes	 Coverage on both 	3D structure of the
and in the surrounding mantle		sides of the plate	Earth, also including
during the post-seismic phase, in		boundaries and	models of visco-elastic
order to quantify the stress		over epicentral	relaxation of the
redistribution along plate		areas.	mantle after a co-
boundaries after an earthquake.		 High accuracy over 	seismic rupture, and
		a range of spatial	coupled models
		scales to separate	combining slow slip
		different spatio-	

	temporal	and visco-elastic	
	signatures of deep	relaxation.	
	aseismic slip (more		
	local) and mantle	Calculation of stress	
	relaxation (involves	redistribution	
	larger scales)		

CSQ-36 Narrative

Constraining the mechanisms of stress accumulation and stress release at plate boundaries during the seismic cycle remains a major challenge of Earth's sciences. We need to identify the processes leading up to the initiation of a rupture, to accurately quantify the spatio-temporal distribution of the co-seismic slip and decipher the post-seismic deformation mechanisms, which contribute to the stress redistribution near the faults, thus the assessment of the seismic hazard.

At subduction zones, space geodetic observations of crustal displacements have shown that the plate boundaries include freely slipping sections and locked zones, where the interface between the plates cannot slip and the continental plate progressively deforms, until the stresses applied to the faults become too large and the rupture occurs. Finely monitoring this progressive strain accumulation in the continental plate remains essential in order to map the areas prone to a seismic rupture. Until now, it has however not been sufficient to anticipate a rupture over the short term. Geodetic and seismic data have also revealed a variety of transient motions at different time scales at the shallower depths of the plate interface, from tenths of second for tremors, to years during slow slip events (Schwartz & Rokosky, 2007). Their interactions with seismic ruptures is still not well understood. At greater depths, these transient motions are less well documented because they have not produced measurable crustal displacements, but they are reflected in observations of deep seismic activity, and more recently, in anomalous gravity signals observed 1-2 months before two great ruptures from GRACE (Panet et al., 2022). Retrospective analyses have evidenced a variety of such transient signals before large ruptures, suggesting the existence of interactions between deep and shallow deformation processes at different time scales prior to large subduction earthquakes (see references in Panet et al., 2022).

Today, our understanding of ruptures initiation is still based on a partial image of the movements near the plate boundaries, missing a large part of the motions at depth. The oceanic domain is also not well covered, yet subduction boundaries are located in coastal oceanic areas. To progress in the modelling, and possibly forecasting, of seismic cycle processes, it is essential to monitor deformation at all depths, over a broad range of spatial and temporal scales, on both sides of the plate boundaries. At subduction zones, this could allow us to understand the role of deeper slab dynamics in the initiation of a rupture. Combined with ground deformation and seismological data, a homogeneous coverage of mass

changes all over oceanic epicentral areas as obtained by satellite gravity would provide a better description of the spatial extent of the co-seismic slip and enable us to assess the relative role of different

Anomalous gravity gradient signal in February 2011, before the March 2011 Tohoku earthquake, attributed to slab extension (Panet et al., 2022). Colors : -0.075 to 0.075 mEötvös.

post-seismic deformation processes, such as localized slip or mantle visco-elastic relaxation

References

Chen, J., Cazenave, A., Dahle, C., Llovel, W., Panet, I., Pfeffer, J., Moreira, L. (2022). Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry, *Surveys in Geophysics*, 43, 305-345, <u>https://doi.org/10.1007</u> (Section 6: Solid Earth Mass Change from GRACE/GRACE-FO)

- Panet, I., Narteau, C., Lemoine, J-M., Bonvalot, S. & Remy, D. (2022). Detecting Preseismic Signals in GRACE Gravity Solutions: Application to the 2011 Tohoku Mw 9.0 Earthquake, *Journal of Geophysical Research*, 127(8), e2022JB024542.
- Schwartz, S. Y. and Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum-Pacific subduction zones. *Reviews of Geophysics*, 45, RG3004.