Numerical Modeling of Asteroid Ocean Impact: Preparing Pipeline for Future Scenario Modeling

8th IAA Planetary Defense Conference 2023 April 6th, 2023

> Lauren S. Abrahams, Betsy R. Seiffert, Megan Bruck Syal, Souheil Ezzedine, Dana L. McGuffin, and Donald D. Lucas

LLNL-PRES-846331 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Modeling asteroid ocean impacts using multi-physics hydrocode Values based on PDC 2023 hypothetical impact exercise epoch 1

- Impact of near earth objects (NEOs) are low probability high consequence hazards. The initial impact can have a variety of secondary hazards that are dependent on geographical location.
- We focus this work on water impacts with special interest on tsunami wave generation/propagation and atmospheric affects

Key Parameters	Value
Asteroid diameter	600 m
Asteroid density	2.12 g/cm ³
Asteroid porosity	20%
Asteroid velocity	12.67 km/s

Multi-physics hydrocode (ALE3D)

Arbitrary Lagrangian-Eulerian scheme

- Asteroid impact and crater formation
 - Initial mesh element size: 5 15 m
- Material details:
 - Livermore Equation Of State (LEOS) data tables used to determine thermodynamic properties of air, water, and earth
 - Granite asteroid uses GEODYN material model
- Adaptive mesh refinement (AMR) applied to the area around the asteroid and material interfaces

Multi-physics hydrocode (ALE3D)

Arbitrary Lagrangian-Eulerian scheme

Asteroid impact and crater formation

Initial mesh element size: 5 – 15 m

- Material details:
 - Livermore Equation Of State (LEOS) data tables used to determine thermodynamic properties of air, water, and earth
 - Granite asteroid uses GEODYN material model
- Adaptive mesh refinement (AMR) applied to the area around the asteroid and material interfaces

Pipeline for consequence calculations

Linking high-fidelity hydrocode to atmospheric and tsunami models

Pipeline for consequence calculations

Linking high-fidelity hydrocode to atmospheric and tsunami models

Multi-physics hydrocode (ALE3D)

- Arbitrary Lagrangian-Eulerian (ALE) scheme
- $\Delta x = 5 50$ m, $\Delta t = 10^{-6} 10^{-4}$ s
- Crater formation, vaporization, conversion to wave energy, and asteroid pulverization

Weather Research & Forecasting (WRF) model

- $\Delta x = 1 \text{ km}, \Delta t = 2 6 \text{ s}$
- Includes cloud microphysics

Boussinesq solver

- $\Delta x = 100 \text{ m}, \Delta t = 0.5 \text{ s}$
- Tsunami propagation and dispersion

Inundation of coastal areas and forces on structures

Asteroid: 600-m diameter, traveling normal to the earth's surface at 12.67 km/s

 Simulation starts with asteroid just above water

Asteroid: 600-m diameter, traveling normal to the earth's surface at 12.67 km/s

 Simulation starts with asteroid just above water

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave
- Crater rim grows, reaches 11 km before collapsing
- Asteroid pulverizes into smaller pieces

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave
- Crater rim grows, reaches 11 km before collapsing
- Asteroid pulverizes into smaller pieces

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave
- Crater rim grows, reaches 11 km before collapsing
- Asteroid pulverizes into smaller pieces

- Simulation starts with asteroid just above water
- Asteroid impact causes shock wave formation, water vaporizes into steam and liquid water creates crater rim
- Shock wave reaches water-earth interface, earth layer allows for reflection and transmission of wave
- Crater rim grows, reaches 11 km before collapsing
- Asteroid pulverizes into smaller pieces

Hot vapor plume moves up into atmosphere

Linking necessary for modeling cloud formation atmosphere effects on longer time scale

Impact in shallow water deforms and vaporizes seafloor

Changing vapor to include steam and dust

Pipeline for consequence calculations

Linking high-fidelity hydrocode to atmospheric and tsunami models

Future linking to Weather Research & Forecasting (WRF) model

Modeling workflow potential and future direction

- Model applies historic atmospheric meteorology data of real cloud coverage
 - Near South Africa, south of Madagascar
 - 9:00 am local time on June 3, 2022
- Simulated change in temperature shows
 - Atmospheric gravity waves
 - Cooling due to cloud formation at late time
- Results give insight into post-impact weather and potential global radiative effects

Pipeline for consequence calculations

Linking high-fidelity hydrocode to atmospheric and tsunami models

Multi-physics hydrocode (ALE3D) Weather Research & Forecasting (WRF) model Arbitrary Lagrangian-Eulerian (ALE) scheme $\Delta x = 1 \text{ km}, \Delta t = 2 - 6 \text{ s}$ $\Delta x = 5 - 50$ m, $\Delta t = 10^{-6} - 10^{-4}$ s Includes cloud microphysics Crater formation, vaporization, conversion to wave energy, and asteroid pulverization **Boussinesq solver Computational Fluid** $\Delta x = 100 \text{ m}, \Delta t = 0.5 \text{ s}$ Dynamics (CFD) model Tsunami propagation and dispersion Inundation of coastal areas and forces on structures

Pressure difference causes seafloor rebound

Damped oscillation and crater infill creates the initial tsunami wave train

1.0e-06 1.0e-05 1.0e-04 1.0e-03

Density (g/cm³)

Pressure difference causes seafloor rebound

Damped oscillation and crater infill creates the initial tsunami wave train

Complex nature of seafloor rebound and tsunami generation

Tsunami waves generate and propagate while seafloor is continuing to deform Tsunami wavelength within deep-water limit dispersion will occur

Lawrence Livermore National Laboratory

Complex nature of seafloor rebound and tsunami generation

Tsunami waves generate and propagate while seafloor is continuing to deform Tsunami wavelength within deep-water limit dispersion will occur

Lawrence Livermore National Laboratory

Pipeline for consequence calculations

Linking high-fidelity hydrocode to atmospheric and tsunami models

Looking forward

- Numerical models can assess potential hazard and lead to recommendations for emergency response
- Complexity of thermodynamic and elastic behaviors captured in hydrocode
- Timely and credible consequence calculations could factor into the decision to fly reconnaissance and/or mitigation missions.

