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ABSTRACT

Spacecraft Trajectory Design, and more precisely the minimization of fuel needed in space op-
erations, is a topic that has increasingly attracted more interest, due to the desire of improving
the efficiency of future space missions. The current investigation is inserted in this context, since
it aims at providing a full optimization algorithm for fixed-time orbital transfers in the Circular
Restricted Three Body Problem dynamic framework. Primer Vector theory is employed to assess
optimality and provide a criterion to decrease the transfer cost by inserting intermediate impulsive
manoeuvres along the trajectory. Numerical ad-hoc methods are first exploited to guess a rea-
sonable 2-impulses transfer and estimate the Time Of Flight, this kept constant for the rest of the
process. Tests are performed on transfers between Earth-Moon Halo orbits, which have been tar-
geted by NASA as possible parking spots in future Moon missions, showing the results obtained
in terms of fuel saving and optimality achievness.

1 INTRODUCTION

The ongoing interest in returning to the Moon and exploring the outer deep space finds evidence in
the recent NASA Artemis program [1]. The plan originally scheduled is the permanent establishment,
by the end of 2024, of a Lunar Gateway Station (or simply called Gateway) orbiting onto a Near
Rectilinear Halo Orbit (NRHO), a subfamily of the Halo orbits in the Earth-Moon system [2]. This
family of orbits was chosen due to particularly favourable stability and eclipsing avoidance properties,
both factors bringing advantages in managing the energy resources available for the entire mission [3].
In this context of increasing interest for the space field, a large amount of research works has been
focusing on spacecraft trajectory optimization. Minimizing the fuel brought on board is effectively
a realistic goal which will help find more affordable paths through the outer space, in the attempt of
exploring and possibly colonizing it with repeated missions in the next decades. Among the space
operations with low-energy requirements, orbital transfer is indeed one of the most direct and typical
applications, also referred to as phasing ([4], [5]).
When dealing with spacecraft trajectory optimization, separate choices are equally exploitable. The
first distinction to make regards the mathematical model adopted to describe the space environment.
It is known since Newton’s epoch that a body in space moves under the gravitational attraction caused
by all the celestial bodies surrounding it. What distinguishes one model from the other is the level of
accuracy, which is translated in considering just 2 bodies in Newton’s gravitational law, the Restricted
Two Body Problem (R2BP) [6], to an arbitrary large number N, the N-body Problem [7]. The more
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accurate the model, the more complex it is to analyse the system and to consequently synthesize an
optimal control. A reasonable compromise often used, at least as a preliminary study, is the Circular
Restricted Three Body Problem (CR3BP), which accounts for two dominant celestial bodies plus an
additional one with negligible influence [8].
Another difference found inside trajectory optimization studies consists of the propulsion’s nature.
When the thrust is assumed as a continuous variable, the optimization is low-thrust and the Equations
of Motion (EOMs) must consider the contribute of the input acceleration vector, which can act at
any time during the propagation [9]. On the contrary, if propulsion acts only at discrete times and
its duration is very short if compared to the mission’s temporal arc, then the optimization is high-
thrust and the EOMs only include the natural gravitational force. The high-thrust model is very often
a reasonable assumption, not only due to the technological limitations of modern engines, but also
because of the major simplicity in designing analytical expressions for high-thrust control laws.
Historically, another distinction is made based on the method employed to solve the optimization
problem: the direct and the indirect methods [10]. While the direct methods approach the problem
via some non-linear programming technique after discretization of the design variables, the indirect
methods are based on the well-known optimal control theory [11]. Among the indirect methods,
Lawden’s Primer Vector (PV) theory [12] has turned out to be a powerful tool to assess optimality in
Aerospace applications, as demonstrated by several existing works related to the optimization of both
low [13] and high-thrust [14] transfers in CR3BP environment.
An indirect high-thrust optimization algorithm for fixed-time orbital transfers in CR3BP framework
is presented in the current investigation. The low-energy fuel injection strategy is generated through
the insertion of an arbitrary number of intermediate impulses along the path, by employing both PV
and non-linear optimization theory. The algorithm is implemented as additional module of the already
existing Sun-Earth-Moon python (SEMpy) library [15], a software tool for studies in non-keplerian
environments developed and maintained at ISAE-SUPAERO, Toulouse, France. With respect to pre-
vious similar works [16], this paper gives a detailed description of the structure of the algorithm
proposed and combines it with numerical initial guess determination methods in order to validate it
in a large set of applications. The topics are organized as follow: the second section poses the math-
ematical basis needed in the development of this work, from the CR3BP dynamic model adopted to
Lawden’s PV theory, which represents the core of the optimization process, to the Multiple Shooting
(MS) numerical method to build trajectories satisfying specific constraints; the third section describes
some implementation details for the sake of reproducibility of this work’s results, these ones being
then illustrated, for Halo-Halo transfer cases, and deeply assessed in the fourth section; the fifth and
final section of the paper draws the conclusions, putting the emphasis on the points of strength and
weakness of the present algorithm and explaining what should be improved in future investigations
before it could realistically become a useful mission design tool.

2 METHODOLOGY

In the rest of the paper, scalar quantities are indicated with non-bold letters, while multi-dimensional
quantities, such as vectors and matrices, with bold font. This means, for example, that we will refer
to the velocity vector as v, while its norm will be denoted with v.

2.1 Circular Restricted Three Body Problem

The spacecraft is modelled as a particle of mass m which moves under a gravitational potential caused
by two primary bodies m1 and m2, with m ≪ m2 < m1. Since m is considerably minor than the
other two masses, its effect on the overall gravitational field is negligible. The mass parameter of the
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CR3BP framework is defined as:

µ =
m2

m1 +m2

∈ (0, 1) (1)

To remove any explicit dependence from time, the EOMs are conveniently derived in a rotating ref-
erence frame, illustrated, together with the fixed inertial one, in Fig.1. Here, the x-axis is always
aligned with the two primary bodies, which rotate at constant angular speed Ω around the primaries’
barycenter, located in the frame origin OG, and the z-axis points in the direction of the system’s angu-
lar momentum (with the y-axis to complete the right-handed triad). Additionally, position and times
are normalized respectively per L, the distance between the primaries, and per Tc/2π, where Tc refers
to the orbital period of the circular motion. From Ω = 2π/Tc, it also follows that the normalized
angular speed is unitary.

Figure 1: Dynamic framework: in blue the fixed inertial frame, in black the rotating frame

Denoted with x = [r v]T = [x y z vx vy vz]
T the spacecraft’s state expressed in the normalized

rotating frame, writing the kinetic and potential energy and passing by the Euler-Lagrange equation
one obtains [8]:

ẋ = f(x)


ṙ = v

v̇x = x+ 2vy − (1− µ) (x+µ)
d3
− µ (x−1+µ)

s3

v̇y = −2vx + y − (1− µ) y
d3
− µ y

s3

v̇z = −(1− µ) z
d3
− µ z

s3

(2)

The EOMs are characterized by high non-linearity and a third-order singularity in d = 0 and s = 0,
namely in correspondence of the primary bodies, being d and s respectively the distances from m1

and m2. Moreover, a study on the equilibria of the dynamic system described by Eq.2 yields 5 points,
the so-called Lagrange points Li, i = 1 . . . 5, around which some interesting periodic solutions arise
starting from the linearized dynamic (such as the Halo orbits mentioned in the introduction to this
work) [17].
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A first-order sensitivity analysis leads to the definition of the State Transition Matrix (STM), defined
as a matrix Φt,t0 ∈ R6×6 obeying the matricial differential equation:

Φ̇t,t0 =
∂f(x)

∂x
Φt,t0 Φt0,t0 = I6×6 (3)

The STM relates a perturbation in the state at a generic time t with the initial perturbation at time t0
through the equation:

[
δrt
δvt

]
= Φt,t0

[
δr0
δv0

]
=

[
At,t0 Bt,t0

Ct,t0 Dt,t0

] [
δr0
δv0

]
(4)

2.2 Primer Vector Theory

The orbital transfer is optimized in this work through the insertion of intermediate impulsive maneu-
vers along the path, under high-thrust hypothesis. Assuming to have a set of N nodes, modelling
the points in the space where an instantaneous change of velocity ∆v can occur, the optimization
problem is translated in the minimization of the cost function:

JN =
N−1∑
i=0

∥∆vi∥ =
N−1∑
i=0

∆vi (5)

The number of total nodes N is a design variable of the optimization problem. While the first and
final node are constant and specified as boundary constraints of the problem, the intermediate ones
are selected based on an indirect optimization process which exploits the well-consolidated PV the-
ory [12]. Given two consecutive nodes (xi, ti) and (xi+1, ti+1) previously connected, the PV and its
derivative at a generic time t, with ti < t < ti+1, can be computed as [18]:

pt = (At,i −Bt,iB
−1
i+1,iAi+1,i)

∆vi

∆vi
+Bt,iB

−1
i+1,i

∆vi+1

∆vi+1

ṗt = (Ct,i −Dt,iB
−1
i+1,iAi+1,i)

∆vi

∆vi
+Dt,iB

−1
i+1,i

∆vi+1

∆vi+1

(6)

Putting together the results obtained with Eq.6 for each pair of adjacent nodes, the whole PV history
along the trajectory is derived. Then, the local optimality can be assessed based on the satisfactory of
Lawden’s necessary conditions:
1. p and ṗ must be continuous everywhere.
2. p = ∥p∥ ≤ 1 along the whole trajectory, with p = 1 at those times in which an impulse occurs.
3. When p = 1, the PV is a unit vector pointing in the direction of the optimal thrust.
4. At the intermediate impulses, ṗ = d

dt
∥p∥ = 0.
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In case ∥p∥ > 1 during a specific time interval, the total transfer cost can be decreased by adding a
new node at a proper time and then displacing its position to initialize a velocity discontinuity. Com-
puting the difference in the total cost result of the perturbation of a nominal trajectory, the maximum
decrease in cost is proved to be obtained if the intermediate node is first initialized onto the current
path at the time of maximum PV magnitude pm, say (xm, tm) , and then its position is perturbed of
the quantity [19]:

δrm = β (−B−1
i+1,mAi+1,m −Dm,iB

−1
m,i)

−1 pm

pm
(7)

At this point, computing the PV again with Eq.6, the fourth Lawden’s law is usually not verified, as
in the process of derivation of Eq.7 the derivative is not taken into account. However, the position
ri and time ti of all the intermediate impulses can subsequently be optimized thanks to a gradient-
based non-linear minimization process, exploiting the analytical knowledge of the first derivative∇J :

∂JN
∂ri

= ṗ+
i − ṗ−

i

∂JN
∂ti

= ṗ−
i · v−

i − ṗ+
i · v+

i

(8)

where the superscript notation distinguishes the quantities immediately before (-) and after (+) the
velocity discontinuity. The convergence towards the stationary point of J implies the satisfactory of
the zero-derivative condition at the intermediate impulses, but not necessarily the one regarding the
PV magnitude. The whole process of initialization of a new node, displacement of its position and
gradient-based optimization can nevertheless be iterated, until Lawden’s necessary conditions of op-
timality are all verified. In the present work, the Broyden-Fletcher-Goldferb-Shanno (BFGS) method
[20] is used, which means the design variable vector k = [r1, t1, . . . , rN−2, tN−2] moves at each
iteration according to the update expression:

k = k− α H ∇J (9)

where α is the perturbation’s step length and is selected via a Wolfe Line Search (WLS) [20], while
H is the approximate inverse Hessian computed by the method at each step in order to achieve super-
linear convergence speed under certain regularity assumptions.

2.3 Multiple Shooting

The BFGS optimization process requires the evaluation of the cost function given by Eq.5 in several
different configurations of the intermediate manoeuvres. In order to compute the quantity ∥∆vi∥ =∥∥v+

i − v−
i

∥∥ for each i with enough precision, one has to first ensure the position continuity between
the propagated state from the node before and the node after, both at the unique time ti, namely
r−i = r+i . As no exact solution to this problem has been found yet, the typical resolution procedure
consists of a numerical method known in literature as Multiple Shooting (MS) [21] and depicted,
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for the application at hand, in Fig.2. Here, the initial and final points are determined by the boundary
constraints of the transfer, while the intermediate nodes are guided in position and time by the gradient
of Eq.8. From these considerations, it follows that the only unconstrained variables, whose value must
be found such that the spacecraft does not jump in position along the path, are the velocities at each
node. For the moment, the propagation occurs directly between two consecutive nodes, resulting in
a single arc, from which the MS method assumes the form of its simplest variant, also called Single
Shooting (SS).

Figure 2: Single Shooting procedure for a set of N nodes

Defining the vector of variables and constraints as:

z =
[
v+
0 , . . . , v

+
N−2

]
∈ R3×(N−1)

g(z) =
[
r−1 − r+1 , . . . , r

−
N−1 − r+N−1

]
∈ R3×(N−1)

(10)

the system of equations g(z) = 0 has a unique solution, which can be found via any multi-variable
Newton-like root-finding method (for example Levemberg-Marquardt to enlarge the local domain of
convergence [22]). The first derivative is a sparse matrix composed by sub-blocks of the STM and
identity matrices, as one can easily verify taking into account Eq.4.
Sometimes the SS method has convergence issues due to mainly two reasons: inappropriate choice of
the initial guess or high sensitivity related to the ill-conditioned Jacobian matrix. The first factor is a
typical problem to deal with in every local convergence domain numerical procedure. In the present
work, the best effort initial guess for the computation of the perturbed trajectory is represented by the
current one, relying on the small perturbations assumption. As regards the sensitivity, it rises espe-
cially in the proximity of the CR3BP singularities or for excessively long integrations. A practical
strategy to try to solve this problem is to split the propagation between consecutive nodes in multiple
segments (from which the generalization to the MS method), initializing some additional fictitious
nodes onto each propagated arc and adding them to the root-finding problem defined in Eq.10. To
do so, it is necessary to point out that, since these newly added points have no physical meaning but
rather just represent a numerical aid, the whole state’s continuity must be ensured for them. Addi-
tionally, their position is free to change together with their velocity, while their time is kept fixed
once initialized equally spaced one from the other. Because of these considerations, the system main-
tains the property of square dimension, and consequently a unique solution is searched even with in
the most general MS approach. Unfortunately, there is no theoretical rule regarding the number of
fictitious nodes to insert along each arc; as the goal of this part of the algorithm is to successfully
build a trajectory, several trials are made, starting from the simpler SS and eventually increasing the
number of fictitious nodes in order to decrease the sensitivity and hopefully converge to the solution
with the desired precision (which, in a double precision implementation, cannot be set lower than
∥g∥ < 10−13). For the rest of the work, we will refer to this part of the algorithm as simply MS, since
it represents the most general case of building any trajectory, independently from whether fictitious
nodes are inserted to decrease the sensitivity or not and how many of them.
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3 IMPLEMENTATION

The whole project is built over SEMpy, an open-source python library (the GitLab public repository
can found in [23]) developed and continuously updated by the space Advanced Concept Laboratory
(SACLab) team at ISAE-SUPAERO [15]. It offers useful tools for mission design analysis in non-
Keplerian environments, both for research and education purposes . Over the SEMpy layer, a high-
thrust PV-based optimization algorithm for fixed-time orbital transfers in CR3BP dynamic framework
was implemented, the scheme of which is reported in Alg.1.

Algorithm 1 PV-based Optimization of fixed-time orbital transfers in CR3BP framework
Input: CR3BP pair, departure and arrival orbit, departure and arrival position
N ← 2
Compute initial guess JN
Compute PV
repeat

m← argmax PV
Initialize new node (rm, tm)
N ← N + 1
Compute δrm
rm ← rm + δrm
Compute JN and PV
Gradient-based optimization

until Lawden’s optimality laws are all verified

The first input to precise is obviously the pair of primary bodies aimed at studying, identified by the
mass parameter of Eq.1 or by the characteristic length and time of the CR3BP normalized rotating
frame, introduced in section 2 respectively as L and Tc. Then, the departure and arrival periodic orbits
involved in the transfer are computed thanks to the orbit propagation module provided by SEMpy. The
attribute fixed-time refers to the transfer time, also known as Time Of Flight (TOF), which is settled
in the initial guess computation phase of the algorithm and then kept fixed for the whole optimization
process. As for the initial and final node of the transfer, the ones located respectively onto the depar-
ture and arrival orbit, it holds that:

dr−0 = v−
0 dt0

dr+N−1 = v+
N−1dtN−1

(11)

and since dt0 = dtN−1 = 0, it follows that the departure and arrival positions are also constant once
specified at the beginning of the algorithm as user-defined inputs. In that sense, the angle swept by
the spacecraft with respect to the last passage by the periapsis, namely the point of an orbit closest to
the primary body, is defined as:

θ =
t

T
360◦ ∈ [0◦, 360◦) (12)
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with t the current time and T the orbit period. Eq.12 permits to completely characterize the initial
and the final node of the transfer once selected the desired θd and θa on the corresponding orbit. The
strategy adopted in this work for the determination of the TOF is based on the way the initial guess is
computed. Since, unfortunately, no exact analytical 2-impulses solution exists in complex non-linear
environments like the CR3BP, some ad-hoc MS-based methods are exploitable depending on the ap-
plication at hand. The well-known Lambert solution to the R2BP [24] can be fed as initial trajectory
to a MS correction procedure, even though most of the times it deviates considerably from the CR3BP
dynamic, so that its output is often not reliable. Another commonly used approach in literature is the
orbit chaining method [25], which has the advantage of being more faithful to the dynamic environ-
ment adopted but at the same time more restrictive regarding the set of transfers it can be applied on.
Constraining the orbits involved in the transfer to belong to the same family in fact, the TOF can be
first approximated as an average of the departure and arrival orbits’ period, respectively Td and Ta,
weighted for the angle swept throughout the transfer:

TOF =
|Td − Ta|

2

{
(θa − θd)/360 θa > θd

(θa − θd)/360 + 1 θa ≤ θd
(13)

Then, the orbits in between them can be exploited to build a reasonable initial guess with a shape
similar to the one of the family itself. More specifically, an arbitrary number of nodes is positioned
equally spaced onto the intermediate orbits and then connected via a MS procedure. If, on one hand,
as a heuristic rule, one could take more intermediate orbits to mitigate the high sensitivity caused
by longer transfers, it is equally true that the highly complex and unpredictable CR3BP environment
makes it difficult to generalize this rule. For this reason, a trial-and-error approach is once again
adopted, in a similar fashion of how described before for building the trajectories with the MS method
during the gradient-based optimization.
Before showing the results obtained, it is worthy to evidence some algebraic manipulation that helped
mitigating the possibly arising numerical issues. First, looking back at Eq.2, there is one significant
difference between the CR3BP mathematical model and the real physical scenario: the singularities,
which just consist of two points inside the EOMs, actually represent the centre of approximately
spherical celestial bodies. Given this contrast, some limits must be enforced on the state space ex-
plorable by the BFGS optimization, to account for the fact that the spacecraft cannot pass arbitrarily
close to the primaries, even though the mathematical model would technically allow that, otherwise it
would crash onto them. Even though this will not avoid the singularities to occur but rather decrease
their frequency, it is acceptable, in the current implementation, to fall within one of those cases from
time to time and have irrelevant to the final result computational slowdowns.
It may happen sometimes, often when the perturbation in the nominal trajectory is greater than what
is admissible from the first-order small perturbations analysis, that the MS procedure does not con-
verge even if increasing the number of fictitious nodes in the middle. In those cases, the algorithm’s
performance can degrade notably, since the evaluation of Eq.5 is erroneous. Instead of accepting
a gross level of precision, the current perturbation’s step length α in Eq.9 is rejected and the WLS
goes on. The simulations performed seemed to confirm that this choice, provided that such failure
does not occur too often, does not irremediably affect the optimization procedure, since, following
the rejection, a new reduced step length is tested, consequently getting closer to an admissible size of
perturbation. Even in the unfortunate case that the WLS does not find an admissible step length in a
certain BFGS iteration, the research is repeated after the approximate second derivative H is reinitial-
ized to a multiple of the identity matrix, cancelling possible estimation errors occurred throughout the
process and making the direction of search−H∇J instantly closer to a more robust gradient-descent.
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4 RESULTS

The optimization algorithm is tested on Earth-Moon Halo to Halo transfers, in order to prove its
validity in a modern realistic context like NASA Artemis program. The arrival orbit is chosen as the
L2 southern 9:2 lunar synodic resonance NRHO (9 NRHO revolutions per 2 lunar months), whose
properties are listed in Tab.1, originally designed to host the Gateway [26]. The periselene is the
alternative name of the periapsis in case the spacecraft orbits around the Moon. The Jacobi constant C
is an indicator of the orbit’s energy integral of motion, according to the classical definition C = −2E,
with E the mechanical energy in the normalized rotating frame [8].

Table 1: Gateway orbit characteristics

Periselene Radius Ra = 3225.211 km
Period Ta = 6.562 days

Jacobi constant Ca = 3.058

The examples reported in Fig.3-5 are cases of transfer involving the Gateway arrival orbit, associated
with the properties in Tab.1, and a departure orbit still belonging to the L2 southern NRHOs but with a
period of Td = 1.2 Ta. The orbit chaining method is used in this first test phase to first approximate the
TOF via Eq.13 and then determine Halo-like shaped initial 2-impulses transfers, like the ones shown
in Fig.3a, Fig.4a and Fig.5a. In Fig.3b, Fig.4b and Fig.5b instead the optimal N -impulses transfer is
illustrated, with N ≥ 2, result of the optimization algorithm described in Alg.1. Major fuel savings
are always to relate to lower-quality initial guesses, as in Fig.3a and Fig.4a, while less expensive 2-
impulses transfers, like the one in Fig.5a, are closer to the optimal solution and consequently have less
margins of improvement. The fuel saving does not depend on the number of intermediate maneuvers
added as a result of the optimization, rather on the TOF of the transfer. In fact, from the simulations
it emerged that cases characterized by close departure and arrival states occur very rapidly, but at
the expense of being more expensive and usually not optimizable according to PV theory. For more
prolonged transfers, the opposite consideration holds, even if excessively long propagations must be
avoided to prevent uncontrollable increases in the sensitivity and because, from a practical point of
view, it is undesirable to have too high TOFs, especially in crewed missions.
Associated with Fig.3-5, Fig.6-8 report the PV trends in terms of PV magnitude and its approximate
derivative, both for the initial and optimized case. The times at which an impulse occurs are un-
derlined with an empty red circle in order to verify the satisfactory of Lawden’s condition regarding
whether the PV magnitude value at those times is unitary or not. The red star in each initial PV graph
points out the magnitude’s peak, which corresponds to the time at which a new impulse must be ini-
tialized according to PV theory. In case the 2-impulses initial guess turns out to be optimal, either
because the transfer is effectively cheap or it is so unreasonable that is not optimizable, such red star
is not present. Furthermore, even if the intermediate results (for example the 3 and 4-impulses PV
related to Fig.7) are not shown due to lack of space, it is worthy to mention an interesting behaviour
displayed by the algorithm. If on one hand the peak on the 2-impulses PV can generally be notably
high, as it is for Fig.6a and Fig.8a, this feature becomes less and less evident as the algorithm pro-
ceeds. As immediate consequence, the algorithm achieves the largest fuel savings in the first steps,
mainly passing from 2 to 3 impulses, rather than in the latest, where the transfers are semi-optimal
due to the PV magnitude being barely greater than one.
The graphs of the optimized PV history also evidence the derivative value at the intermediate impulses
time. As demanded by Lawden’s fourth optimality criterion, these must be zero following the BFGS
optimization procedure, as it can be proven taking the expression of the gradient of Eq.8 and equalling
it to zero [18]. While in Fig.7b the condition is fully respected, some derivatives in Fig.6b and
Fig.8b present small residuals, whose presence is due to two simple considerations: the first and most
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(a) 2-Impulses transfer (b) 3-Impulses transfer
Figure 3: L2 southern NRHO to Gateway transfer: Td = 1.2 Ta, θd = 220◦, θa = 180◦

(a) 2-Impulses transfer (b) 5-Impulses transfer
Figure 4: L2 southern NRHO to Gateway transfer: Td = 1.2 Ta, θd = 10◦, θa = 350◦

(a) 2-Impulses transfer (b) 4-Impulses transfer
Figure 5: L2 southern NRHO to Gateway transfer: Td = 1.2 Ta, θd = 130◦, θa = 90◦
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(a) 2-Impulses PV (b) 3-Impulses PV
Figure 6: L2 southern NRHO to Gateway PV: Td = 1.2 Ta, θd = 220◦, θa = 180◦

(a) 2-Impulses PV (b) 5-Impulses PV
Figure 7: L2 southern NRHO to Gateway PV: Td = 1.2 Ta, θd = 10◦, θa = 350◦

(a) 2-Impulses PV (b) 4-Impulses PV
Figure 8: L2 southern NRHO to Gateway PV: Td = 1.2 Ta, θd = 130◦, θa = 90◦
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important one is that the BFGS optimization is nested on the MS inner numerical method, so that due
to machine precision its is limited to 5-6 digits after the comma; this limitation could be overcome
passing to quadruple machine precision, in spite of course of much longer computational times. The
other reason stands in the computation of the PV magnitude derivative itself, as it is performed with
an approximate finite difference method [27], inevitably giving raise to tiny errors in the process. It
must be noted though that too different from zero values of the derivatives are sign of an abnormal
behaviour of the BFGS optimization and prevent the convergence towards the optimal solution.
In order to validate the method in multiple different scenarios, other simulations were performed
with more distant obits involved, for which the optimization is intuitively expected to have a lower
convergence rate. Fig.9 and Fig.10 illustrate a case of transfer and the related PV history involving a
more distant L2 southern Halo departure orbit than the one seen in Fig.3-5, while Fig.11-Fig.12 show
an example of transfer in which the departure orbit is a L1 northern Halo with the same Jacobi constant
of the Gateway arrival orbit. As in this last example the two orbits belong to different families, the
orbit chaining initial guess method is not exploitable and the MS-corrected Lambert solver must be
used, with a TOF set to 8 days according to a previous work about optimal Halo-Halo phasing [28].

(a) 2-Impulses transfer (b) 4-Impulses transfer
Figure 9: L2 southern Halo to Gateway transfer: Td = 2 Ta, θd = 150◦, θa = 110◦

(a) 2-Impulses PV (b) 4-Impulses PV
Figure 10: L2 southern Halo to Gateway PV: Td = 2 Ta, θd = 150◦, θa = 110◦
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(a) 2-Impulses transfer (b) 3-Impulses transfer
Figure 11: L1 northern Halo to Gateway transfer: Cd = Ca, θd = 250◦, θa = 300◦

(a) 2-Impulses PV (b) 3-Impulses PV
Figure 12: L1 northern Halo to Gateway PV: Cd = Ca, θd = 250◦, θa = 300◦

5 CONCLUSION

A high-thrust optimization algorithm for fixed-time orbital transfers in CR3BP environment was pro-
posed via a rigorous and sequential formulation. It consists of a multi-maneuvers guidance for fuel
consumption minimization, characterized by multiple intermediate thrusts with positions and times
determined in accordance with a non-linear optimization process based on PV theory. The simula-
tions showed the potentiality of the present optimization algorithm, both as tool for generic studies in
mission design analysis and as first step for future on-board autonomous Guidance. More specifically,
the method has evidenced some points of strength and weakness that it is worthy to emphasize.
The main advantage brought by the algorithm described in this work is probably the possibility to
design optimal trajectories with notable fuel saving. Significant decreases in the propellent consump-
tion are generally obtainable, aspect that can help improve the efficiency of future Moon missions and
make them more repeatable in this epoch of high interest in space. Another positive feature is the rel-
ative ease in the implementation, given that the core of the whole process consists of a gradient-based
optimization exploiting the well-consolidated PV theory.
On the other hand, there are some evident drawbacks that must be assessed separately in possible
future investigations. First of all, the optimization relies on the effectiveness of nested numerical
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procedures, such as the Multiple Shooting and the 2-impulses initial guess determination method, the
convergence of which is fundamental to ensure good performance. Furthermore, up to date no work
has been carried out in the literature related to this topic around the possible extension of PV theory to
more accurate dynamic models (like the N-body problem, a more accurate non-uniform gravity model
for the Earth, etc.). Lastly, more simulations should be run in order to effectively prove the algorithm’s
extendibility to a large variety of case scenarios. At the moment, unfortunately, it is difficult to carry
out such tests, given that the more the distance between the orbits involved, the more difficult it is,
in sense of numerical convergence, to compute a reasonable initial guess and consequently the lower
the performance of the optimization process. Future investigations should focus on studying these
aspects deeper in order to validate the current algorithm and hopefully make improvements to it.
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