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INTRODUCTION 

 

While a significant number of system design studies is still conducted using traditional, loosely connected, modeling 

and data exchange means, there is a strong tendency towards a fully-fledged digital exchange of data between involved 

disciplines and their tools. 

At Airbus’ space division, the System Design Environment (SDE) is being used to digitally integrate system design 

efforts within early project phases (0, A, B0, B1), and to ensure the continuity of data towards later phases. This 

environment involves commercial engineering tools, custom tools, and a variety of data interfaces for facilitating the 

data integration as needed by the early phase system design process. 

The SDE was successfully used in studies such as e.Deorbit, Galileo 2nd Generation Phase B0, as well as numerous 

internal activities, and is continuing to evolve. 

 

 

CHALLENGES WITHIN MANUALLY MANAGED ENGINEERING PROCESSES 

 

Classically, over the last years, a pragmatic approach to designing a system in its study phases is being pursued. This 

approach involves having numerous models, often realized via spreadsheet software, which may or may not be linked 

with each other. These models contain the system design, the subsystem design, and any kind of analysis. Results of 

analyses and updates on the system’s design are then propagated over a multitude of channels that may involve e-mail, 

directly telling a colleague, mentioning changes in meetings, or performing an update of the spreadsheet that may be on 

in the cloud or stored locally. 

While this pragmatic modelling approach is easily set up in the beginning of a project and easily accessible to most of 

the project team, it poses a number of challenges: 

 

 Manual data transfer between models and documents: Data is often being taken from documents, entered into 

models, processed, and the results are then manually transferred to other models or documents. This requires a 

significant data refactoring overhead and has a risk of producing inconsistencies. 

 Updates on data not being propagated: Sometimes, updates on the system are not being propagated throughout 

all disciplines, resulting in analysis iterations using outdated designs, resulting in RIDs and unplanned reworks. 

 System engineering overhead: The system engineering discipline has a significant overhead due to manually 

ensuring consistency and manually propagating necessary updates throughout all parties involved in the 

project. 

 Isolated knowledge cells: Knowledge about data used across several projects is often not documented, and if 

documented, not accessible throughout the company. This makes re-using a product, and integrating its lessons 

learnt, difficult. 

 

The main consequence of these challenges is that the most powerful system that can be produced is somewhat limited 

by its overall complexity. If the data is to be managed manually, the effort will increase with growing system 

complexity. This means that the system is able to be built with exponentially increased cost, or not at all, assuming a 

cost-competitive environment. 
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Fig. 1: Abstracted view on system engineering process 

 

CENTRAL MOTIVES AND PRINCIPLES 

 

The SDE is based on the principles of facilitating organization-internal engineering, co-engineering with suppliers, and 

the collaboration with the customer, using three principles (Fig. 1). 

 

Integration of system engineering and discipline engineering tools 

 

Within the organization, an integration of employed engineering tools within the early system design processes is 

performed. This includes an integration of tools as they are already used, refraining from forcing change on tool usage. 

 

Continuity of data and product 

 

The data produced in phase 0 is able to be reused in phase A, and can be used up to utilization and decommissioning of 

the system, if desired. There is no need to transform or extract the data, enabling the back-tracing of changes throughout 

all lifecycle phases. Furthermore, an integration of product data into any new project can be performed, allowing usage 

as-is, or with adaptions, while also allowing backflow of product improvements. 

 

Facilitation of collaboration 

 

Between engineering disciplines, but also with ESA and suppliers, means for collaboration facilitation are provided. 

 

 

TOOLS, INTERFACES, AND ARCHITECTURE 

 

The SDE architecture consists of a number of layers that each serve a distinct purpose within the system design process 

(Fig. 2). The most important layers are the Semantic Data Continuity layer (dark blue), and the authoring layer (yellow). 

Engineering data usually originates within an engineering process using one of the authoring tools. Should the data be 

required to be transferred across the discipline border, either for consumption within another domain and tool, or simply 

for versioning, it is passed to the Semantic Data Continuity layer, where it is persisted, versioned, checked regarding  
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consistency. All authoring tools shown in the process have interfaces to the continuity layer. Another layer is focused 

on Data Storage. This layer contains the capability to handle what is commonly called Big Data, and takes care of 

storing the data acquired during system production and testing. The Data Visualization layer visualizes data stored 

within the Semantic Continuity and Data Storage layers. This includes graphical representations of data, or document-

based and web-based representations.The Agile Workflow layer manages the workflow aspect of system design, 

handling RIDs, tickets, actions, etc. their relation to engineering data, and process dependencies. 

 

RangeDB Data Continuity Layer for Versioning and Exchange 

 

The Data Continuity Layer is the central pillar of the SDE. It is realized through the RangeDB technology platform, 

which provides the capability for data representation, data organization, and persistence, as well as common data 

management functionality such as versioning, baselining, querying, report generation, branching and merging, etc. 

Through this layer, a continuity of data across all system decomposition levels, all phases of the system lifecycle, and 

across all disciplines, is provided. 

The RangeDB architecture follows closely the concepts from the ECSS-E-TM-10-23 technical memorandum [1]. One 

of the key principles is the integration of different engineering applications by integrating local conceptual data models 

of the individual tools via a global conceptual data model. The central data model of RangeDB is derived from the 

global conceptual data model as defined by Annex B of [1]. 

 

Product Catalog for Reuse 

 

The Product Catalog building block in Fig. 2 also directly interfaces with the RangeDB continuity layer, providing 

access to the data of engineering products that are already available and ready for use by a project. It provides 

mechanisms to (re-) use these products as they are, to adapt and evolve these products, and to make available new 

products to other projects. The compatibility with RangeDB allows effective data exchange and versioning in line with 

established principles. 

 

System Authoring Tools 

 

The various authoring tools are integrating with the RangeDB continuity layer via dedicated interfaces specifically 

developed for their use case. 

 

One key building block in this context is the System Concept Database (SCDB) application. This application assumes 

the role of the system engineering and system modelling application, as it provides the capabilities to 

 manage the system’s product tree 

 manage different system options/variants 

 access and integrate product data 

 manage key parameters 

 manage domain-specific properties 

 perform operational design 

 manage budgets such as mass, and mode-dependent budgets such as power and data rate 
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Fig. 2: System Design Environment Tools and Interfaces 



 generate design reports 

 trace the history and changes of the system’s design 

 perform baselining of the system 

 perform activities such as data querying, viewing, extraction, etc. 

 control data exchange with other tools 

 

For functional design in terms of mission activities, operational aspects, and functional electrical architecture, an 

integration with SysML [2] is available. This integration allows a separation of the functional and logical architecture 

(SysML) from the concrete physical architecture (RangeDB/SCDB. The SysML-RangeDB integration is bi-directional, 

providing a flexible approach to exchange data within design iterations between both tools. 

 

Discipline-Specific Authoring Tool Integration 

 

As an important integration of an established engineering tool, a CATIA interface is provided. This interface allows 

directly integrating mechanical design data such as component masses, mass assumptions, dimensions, moments of 

inertia, etc. of applicable mechanical components. 

 

The Matlab integration allows to access system design data in Matlab, utilize it for analyses or simulations, and to push 

back analysis results to the system domain. 

 

The integration of the PEET tool is used to digitally exchange data between pointing error analysis and the other 

domains. As data such as focal lengths and distortions is provided by other disciplines, it can be accessed from the 

RangeDB continuity layer by the PEET tool. 

 

An interface with DOORS is used to manage requirements, and to trace them to system design. 

 

An important interface is given by the connection between RangeDB and Excel, as this provides the capability to 

generate reports, and to execute custom analyses. These analyses include budget calculations, parametrized sizing 

considerations, trades, or fully-fledge iterative calculations. 

 

Analysis and Simulation Integration 

 

Apart from Matlab and Excel for basic simulation, other bridges are also provided. In early phase design, analysis 

management tools such as ModelCenter [3] or OpenMETA [4] are increasingly being used [5]. Within these tools, 

RangeDB-based data can be loaded, utilized, and manipulated within defined simulation chains. 

 

 

Fig. 3: e.Deorbit Product Tree within SCDB 



Another integration is given by the SimConf module, connecting RangeDB system data with simulators based on 

Airbus’ SimTG simulator infrastructure. For early system design, the System Concept Simulator (SCS) and the 

Functional Engineering Simulator (FES) are the most applicable [6]. These simulators allow getting an early estimation 

on the system’s performance and design correctness [7]. 

 

Compatibility to Later Phase Authoring Tools 

 

While the SCDB forms the central system authoring tool in early design stages, other RangeDB-based authoring tools 

are being used further d the system design cycle. These tools are fully data-compatible. 

 

The Functional Verification Manager (FVM) is used to engineer the verification part of the system design process, 

spanning verification definition, verification detailed design, verification execution, evaluation and closeout. It provides 

requirement traceability in terms of which requirements will be closed out by which verification activities, what the 

items under test are, etc. It stands in close relation to the system design tool and the system simulators based on the 

Airbus SimTG framework, and with AIT support tools used to execute tests, store test data, and to analyze the results. 

 

The System Reference Database (SRDB) forms a central pillar of avionics design in this context. It is used to specify 

the definitions of operational aspects such as packets, parameters, their calibrations, etc. and provides interfaces to 

import and export dedicated formats, including MIB, EGS-CC, CCS5, etc. 

 

Data Exchange with ESA 

 

The SDE provides an interface to the Open Concurrent Design Tool (OCDT) [8] developed and owned by ESA. OCDT 

is mainly used to exchange concurrent engineering models in order to facilitate concurrent design sessions. OCDT 

manages data such as product structure, system options, system and component parameters, etc. and is based on the data 

specification given in ECSS-E-TM-10-25 [9]. Besides concurrent engineering, this interface can also be used for digital 

data deliveries as review input, and to deliver post-review data packages. 

 

Data Visualization 

 

Apart from visualization of design and analysis data in the usual discipline-specific tools, the capability for cross-

discipline data visualization is also available. The System Data Explorer is a Web application displaying system data in 

different formats useable for analysis. These analyses include visualization of budget trends over time, visualization of 

budget distribution across different subsystems, or just tables of properties common to all system elements. 

 

Agile Workflow Integration 

 

An agile workflow management system is used to collect tickets in the form of issues, actions, etc. within the project. 

These issues may originate directly within the system engineering process performed with SCDB, addressing a concrete 

technical issue, or have their origin more within the execution with any involved engineering activity. For addressing 

issues and tasks that have a relation to the system’s design, an integration within the RangeDB continuity layer is 

provided, allowing the automated update or closing of the respective ticket, should the issue fix be published to the 

continuity layer. 

 

 

USAGE AND LESSONS LEARNED 

 

Project Use 

 

Components within the System Design Environment are used as required and desired by the project. For the Galileo 2nd 

Generation Phase B0 activity, focus was put on performing the system design with SCDB, integrating numerous trades 

and analyses done in Excel, and integrating a Matlab model for discipline-specific analysis, while relying on the 

RangeDB layer for data continuity with following activities. 

 

The e.Deorbit activity started with defining the functional system design, mission activities, and operational aspects in 

SysML. This data was then integrated via the RangeDB layer with SCDB, and distributed to Excel based analyses. 

Furthermore, the ModelCenter integration was used to execute analyses, and to perform design of experiments in order 

to find the system design optimum under the given boundary conditions. The resulting system design was then 

delivered to ESA via the OCDT interface.  



Lessons Learned 

 

Usage of the SDE as a vehicle to facilitate MBSE within early space system design brought several challenges, but has 

also improved several aspects of the engineering process: 

 
 Having a centrally hosted, version controlled system model where disciplines can access the current system 

baseline and provide updates is helping improve overall system design consistency significantly. This resulted 
in considerably less inconsistency RIDs in several activities. 

 Having an Excel integration that directly accesses system data, and can produce reports of current design data 
on demand, helped save a considerable amount of time in report production.  

 The accessibility and browsability of product data for any given SDE-based project helps to disseminate 
knowledge about products, and streamlines product use within the organization. 

 The automated transfer of design data to simulation tools enables new system analysis use cases that optimize 
the overall system design. 

 
Challenges have risen especially in the following fields: 
 

 A continuous trade is being performed between providing an expert tool that allows manipulating every bit of 
data within the system, and providing a simple tool that can easily be learned by new users. 

 The data models of involved tools are not easily mapped, as they cover different aspects of a system’s design. 
In many cases, data mappings have to be correctly interpreted in accordance with their user groups, and the 
mapping and algorithms thoroughly validated. This is especially true for the involved SysML interface. 

 As with any digitalization activity, new tools and principles are emerging rapidly that have to be considered, 
and, if needed, integrated. Interfaces have to be evolved continuously. 
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