
  
Extended Abstract—  

 
We hereby present results of the analysis of a 
multispacecraft swarm NEO deflection simulation using 
deep learning techniques. Spacecraft could be simpler 
and operate longer and farther only if their computational 
capabilities could be transferred to a network. However, 
in tasks that are time-critical such as the uncommon 
situation of the deflection of a NEO object, whether this 
delegation of "intelligence" could be operational in 
practical terms is still a matter of research.  

A multispacecraft swarm of spacecraft should be able to 
operate and react with a very small latency delay. A 
multi-agent system has been proposed in a variety of 
similar applications such as Low-Complexity UAVs1. In 
these situations, preserving low complexity and low 
latency for computational data transmission is essential 
in order for the system to undertake automatic and 
reliable decisions quickly. Furthermore, a multi-agent 
system also preserves energy consumption. On the 
other side, larger swarms may fail to provide reliable full 
connectivity. 

An architecture of signal processing techniques is 
proposed for a swarm multispacecraft network intended 
to deflect a NEO object (Figure 1). The operations 
involve:  

i) tracking the object to be deflected 
ii) cooperative guidance for the multispacecraft 

swarm and  
iii) a multiple impact deflection on the target. 

 
Design of the communication protocol and the physical 
distribution of the multispacecraft swarm are closely 
interconnected. If a unit is unable to process the 
computational load on-board in real time, it should 

 
 

delegate the processing to an external entity (the cloud 
or an edge) so that a communication protocol is 
required. The protocol should be able to push and pull 
packets with information from the sensors. On the 
contrary, if the processor power is enough to process the 
information completely on-board, then the most feasible 
protocol are D2D (device-to-device) communications. 

 
Figure 1: System Architecture. 

The network of multispacecraft comprises the following 
modules:  

- Sensing module. Allowing sensors to observe 
environment and target. 

- Core module. It refers to the capability of each 
spacecraft to process data, acquire critical 
information about the environment and take 
decisions to interact or delegate some tasks to 
other multispacecraft entities.  

- Communication module. It makes possible to 
exchange messages with other entities in the 
network through radio transmitters. 
 

The interactions between each spacecraft and the others 
and the environment is specified as follows:  

- Measurements: sensors inform about the 
environment and target. 
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- Acting: An agent can enable movements to 
navigate and optimize performance of the 
network. 

- Metrics: They are a combination of quantitative 
indicators that are related to the accuracy of 
hitting the target. 

- Messaging: They can be spacecraft to spacecraft 
or edge messages. They allow cooperation 
between different spacecraft or with the edge. 

 
It is worth discussing here that D2D communications 
delays and infrastructure-based communication 
schemes on the spacecraft swarm may have a role in 
the overall performance of the system. Our choice 
requires a higher degree in terms of flexibility of 
communication modes. Each spacecraft is considered 
as a low-complexity agent dynamically acquiring new 
knowledge from the environment and also from the final 
target via observations collected permanently.  

A real scenario with a NEO object has been simulated 
with different swarm architecture configurations. We 
analyse in particular the localization impact accuracy 
versus different approach velocities and spacecraft 
swarm number. Optimization of different parameters has 
been conducted with a deep learning analysis. 
Parameters include: approach velocity, distance to 
target, spacecraft number, NEO diameter, computational 
capability and spacecraft variability.     

The deep learning optimization process was performed 
using Stochastic Gradient Descent (SGD) Algorithm with 
momentum, with Python code and Numpy.  

NEO diameter ranges from 10 m. diameter to 700 m. 
Distance to target may vary from 100 km. to close 
encounter and hitting the target. Spacecraft number 
ranges from 1 to 500, where computational capability 
ranges from simple 105 Gflops to 1012 Gflops, although 
these last ones cannot be considered as low-complexity 
processing units.  Spacecraft variability is defined in 
terms of maximum communication range from r=0.1 km. 
to r=1 km. and up to five hops. In all possible NEO 
diameter sizes variations and distance to target hitting, 
optimal solutions arefound for low-complexity processing 
units and a swarm in the order of 101 spacecraft units. 
Lower or higher number of spacecraft units or 
processing power result in a rapid descent of the system 
performance figure of merit as described below. 

When the spacecraft network runs fully on a D2D 
configuration, not delegated to the edge or external 
entities, the processing task is performed locally, 
exchanging data with other spacecraft. Then each 
spacecraft from the swarm runs with a limited amount of 
data which has been recently collected by its sensors 
and D2D messaging with sensed or processed 
information about swarm location information.  

On the other side, when low-processing power 
spacecraft are due to process a large amount of 
information in order to perform complex movements, and 

at the same time, some spacecraft are isolated, a 
sudden decrease of performance may appear. On the 
contrary, when the swarm is fully interconnected, it 
makes possible to perform fast decisions as the 
spacecraft does not need to interact with external units.  
This latter situation further increases the reliability of the 
system against temporary glitches or malfunctions which 
can suddenly appear during a deflection mission. 

As the swarm is not supervised, the spacecraft can 
make up clusters simply adding to the shortest distance 
among them (in multiple hops) or relying in a 
configuration that allows the different spacecraft to rely 
on one another. In order to preserve low latency, some 
packets carrying messages can then be dropped and 
therefore, lost. Then, the availability of information may 
impact the accuracy of real-time decision-making.  

Regarding the spacecraft agent intelligence, it is 
proposed a double-module intelligence processing unit: 

i) A fast AI engine module that integrates the 
available information and estimates the 
location and velocity of the target, and  

ii) A Control Module allowing for dynamic learning 
and updating rules and policy strategy. 

 

A computational complexity analysis has been 
performed as well. We have evidenced in the 
simulations that the edge can be of benefit in reducing 
the overall time needed for identifying the optimal swarm 
formation that leads to better approaching the target. In 
order to further reduce delays it is proposed not to 
delegate anti-collision messaging operations to cloud 
and external nodes.  

Based on the simulation results, a metric is proposed as 
a measure of the swarm proficiency. The figure of merit 
is the percentage of times the target is detected through 
time and for different numbers of spacecraft, based on 
the learning performance in terms of detection rate as 
proposed by Guerra and Guidi1. 

As a conclusion, a hybrid approach in terms of sensing 
and fast communication capabilities, depending on the 
particular characteristics of the target, offers the best 
solution for optimizing the capabilities of this original 
deflection system. Employment of a large number of 
coordinated spacecraft accelerates the learning 
procedure, which is critical when exploring huge 
environments. Nevertheless, communication delays, in 
particular with the edge is a downside that needs to be 
taken into account when enlarging the size of the 
spacecraft swarm. 
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