8th IAA Planetary Defense Conference : PDC2023

Hayabusa2 Extended Mission : Hayabusa2#

2001 CC21

1998 KY26

3 April 2023 @ Vienna, Austria

Makoto Yoshikawa¹, Yuya Mimasu¹, Satoshi Tanaka¹, Masatoshi Hirabayashi², Takanao Saiki¹, Satoru Nakazawa¹, and Yuichi Tsuda¹ (¹JAXA, ²Auburn University)

Overview

- Hayabusa2 mission (3 Dec. 2014 6 Dec. 2020) was successfully finished.
- We have extended the mission as Hayabusa2#.

(SHARP) : Small Hazardous Asteroid Reconnaissance Probe

- The target asteroids are (98943) 2001 CC21 (flyby in 2026) and 1998 KY26 (rendezvous in 2031).
- Up to now, the spacecraft has been operating smoothly.

The purpose of Hayabusa2#

- Long-term operation of spacecraft in space (more than 11 years longer than the plan)
- ➢ Fast flyby operation
- Exploration of a very small (size ~30m) asteroid

Launch

Dec 3, 2014

Extended mission

Earth swing-by

Dec 3, 2015

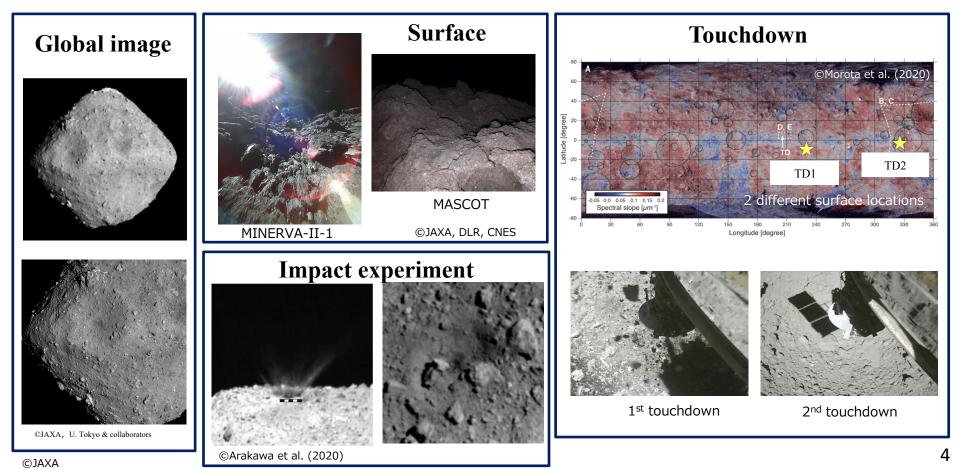
Artificial satellites around Ryugu

Hayabusa2 : Mission scenario

Ryugu arrival

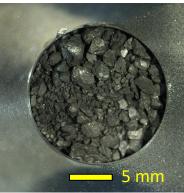
June 27, 2018

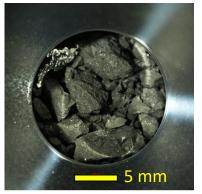
MASCOT separation Oct 3, 2018

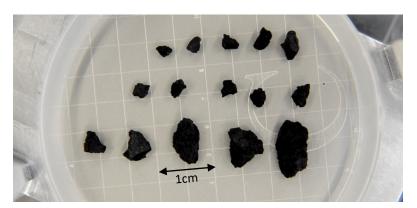

MINERVA-II-1 separation

Sep 21, 2018

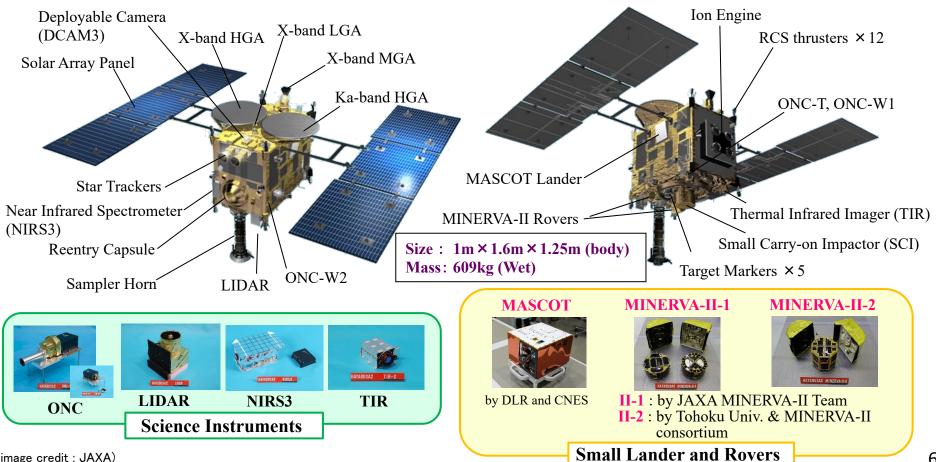
Asteroid Ryugu

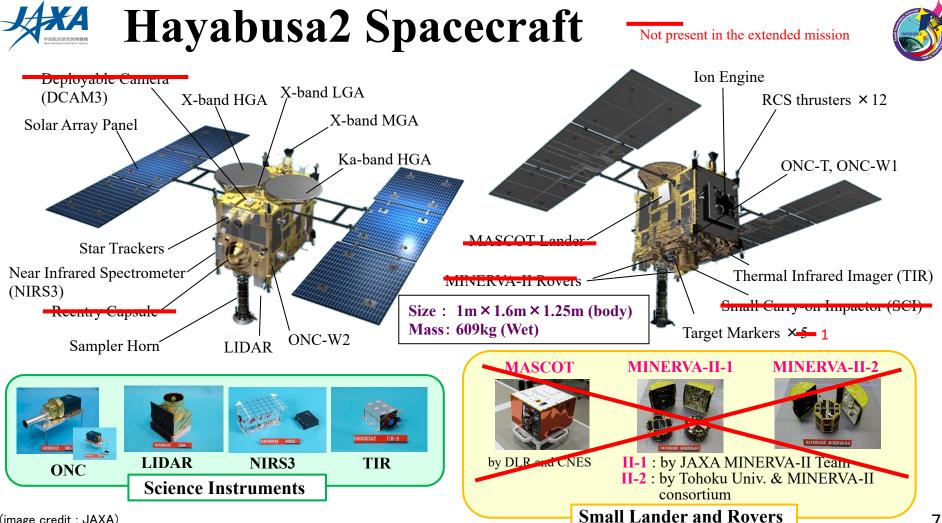



Samples of Ryugu


Ryugu samples from TD1

Ryugu samples from TD2

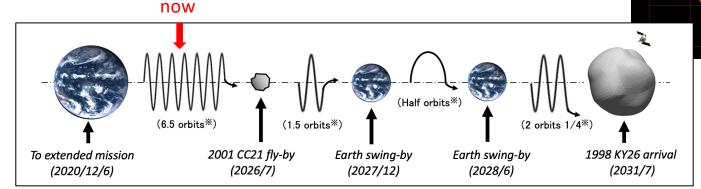




Large pieces

Hayabusa2 Spacecraft

⁽image credit : JAXA)



Hayabusa2 Extended mission Hayabusa2#

(SHARP) : Small Hazardous Asteroid Reconnaissance Probe

- •After returning to the Earth in December 2020, we continue to operate Hayabusa2.
- •After the main mission, the spacecraft dose not have major problems. 50% of xenon (the fuel for ion engines) remained.
- The next target is the flyby of 2001 CC21 in July 2026.The final target is the rendezvous of 1998 KY26 in July 2031.

Object positions on 8 Feb. 2023

Ryugu

Hayabusa2

1998 KY26

2001 CC21

* indicates the number of orbits around the Sun.

The target asteroids of Hayabusa2#

2001 CC21

Artist's illustration (by A. Ikeshita)

Shape	elongated?		
diameter	700 m (albedo 0.15 assumed)		
Spin period	5.017 hours		
Spectral type	L type		
Semimajor axis	1.03 au		
Orbital period	1.05yr(383 day)		

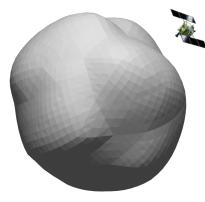
1998 KY26

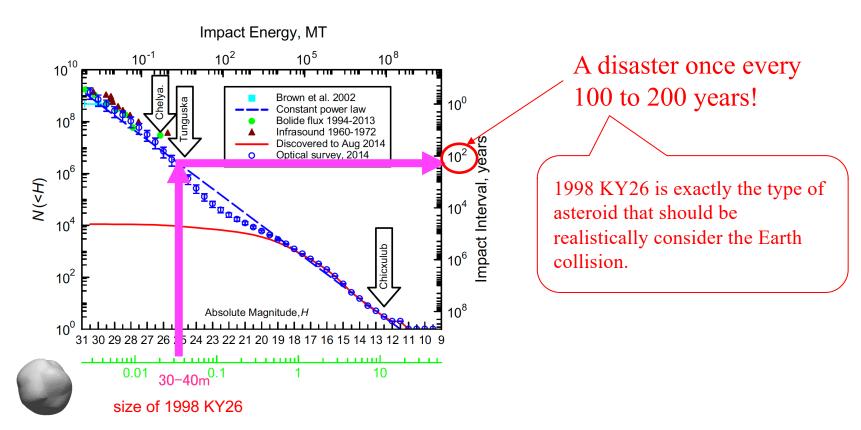
Artist's illustration (by A. Ikeshita)

Shape	Spherical (from radar observation)		
Av. diameter	About 30 m		
Spin period	10.7 min (0.178 hr)		
Tumbling motion	No short-term variability detected		
Spectral type	Possible carbonaceous asteroid		
Semimajor axis	1.23 au		
Orbital period	1.37yr(500 day)		

Shape model:

Poster by M. Hirabayashi




Image credit: Auburn University, JAXA

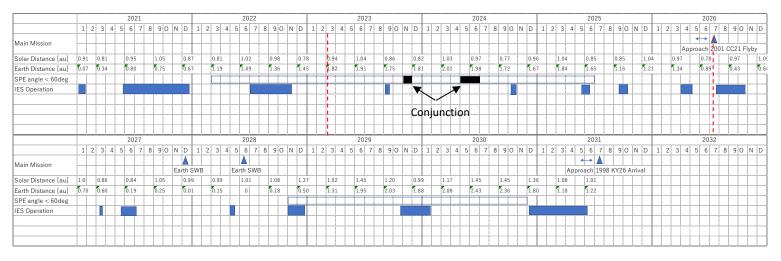
1998 KY26 original data for the shape model:

Ostro et al. (1999), Radar and optical observations of asteroid 1998 KY26, Science, 285, 5,427, 557–559.

Prediction of asteroid collision frequency

(Modified from Harris and D'Abramo, Icarus 257 (2015) 302-312)

Mission Sequence of Hayabusa2#


宇宙航空研究開発機構

Timing	Event	Engineering Achievement	Science Achievement	1.5 6.5 revolution 1 evolution Extended Mission, started Earth Venus 0.85AU
2021/1 ~ 2026/7	Deep Space Cruise	Acquisition of long-term operation technique of spacecraft under the resource- saving scheme in deep space	 Zodiacal Light Observation Exoplanet Observation 	Dec. 2027 Earth Swing-by
2026/7	Flyby 2001 CC21	 Super proximity flyby to asteroid Precise targeting technique for the asteroid flyby contributes to Planetary Defense study 	Flyby Observation of L- type Asteroid	-1.5 -1.5 -1 -0.5 0 0.5 1 15 X(J2@00EC) [AU] July 2026 July 2026 Z001CC21 Flyby
2027/12	Earth Swing-by	 Completion of 1st leg of long- term deep space operation 3rd Earth swing-by 	Calibration of on-board science equipment by Moon observation	1.5 0.5 1 revolution 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2028/6	Earth Swing-by	 Completion of 2nd leg of long- term deep space operation 4th Earth swing-by 	Calibration of on-board science equipment by Moon observation	С О О О О О О О О О О О О О
2031/7	Rendezvous 1998 KY26	 Completion of 3rd leg of long- term deep space operation Multi-rendezvous to asteroid Acquisition of exploration technique to the fast rotator, which also contributes to Planetary Defense study 	 Clarification of formation and evolution of Fast Rotator Acquisition of the scientific knowledge which contributes to Planetary Defense study 	(c) JAXA = (c) JAXA

IES Operation Plan in Extended Mission

Orbit Plan Concept

- One-unit IES thrusting operation is assumed to use.
- Stop IES during perihelion region (solar distance < 0.8au)
- Put a priority to minimize the delta-V before the asteroid flyby in order to surely arrive at 2001 CC21
- To minimize the delta-V between asteroid flyby and 1st Earth swing-by as second priority
 ※IES : Ion Engine System

Required delta-V to 1998 KY26

Phase	Delta-V
Earth Return ~ Now	600 m/s
Now ~ CC21	115 m/s
CC21 ~ Earth SWB1	192 m/s
Earth SWB1 ~ Earth SWB2	30 m/s
Earth SWB2 ~ KY26	426 m/s

Operations for the flyby of 2001 CC21

Flyby data

- flyby date : July 2026
- Relative velocity at flyby : about 5km/s
- Flyby distance : less than 100 km (considering the capability of the telescopic optical navigation camera, ONC-T)

Artist's illustration (by A. Ikeshita)

- Hayabusa2 was not intended for flyby exploration, so flyby operations are challenge to the limits of navigation and guidance accuracy for us.
- We try to approach as close as possible to the asteroid while minimizing the risk of collision.
- Since the shorter the flyby distance, the faster the attitude control is required, we are considering to take images before the fast attitude control is necessary.

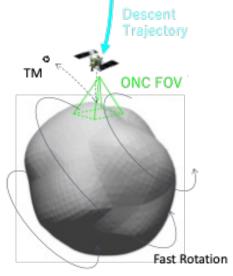
Actual Trajectory

Combination of on-board and on-ground navigation and guidance

TCM

TCM # n

B-Plane



Rendezvous with 1998 KY26

Artist's illustration (by A. Ikeshita)

- Hayabusa2 will arrive at 1998 KY26 in July 2031.
- We will observe this asteroid by using the remote sensing instruments onboard, such as Optical Navigation Camera (ONC), Near Infrared Spectrometer (NIRS3), Thermal Infrared Imager (TIR), and Laser Altimeter (LIDAR).
- Hayabusa2 has one target maker (an artificial landmark) and one projectile, so we are considering how to use these things.

Touchdown?

- Since 1998 KY26 is rotating rapidly, the centrifugal force is larger than the gravity attraction at almost all the surface except for the polar regions.
- If we try to touchdown on the surface of this asteroid, we cannot use our method for the touchdown to Ryugu (the method using the target marker).
- One of the possibilities to execute touchdown is to enage GNC (Ground Navigation Control) software to use the natural feature tracking without relying on the target marker.

Summary

- Hayabusa2 mission (3 Dec. 2014 6 Dec. 2020) was successfully finished.
- We have extended the mission as Hayabusa2#.

(SHARP) : Small Hazardous Asteroid Reconnaissance Probe

- The target asteroids are (98943) 2001 CC21 (flyby in 2026) and 1998 KY26 (rendezvous in 2031).
- Up to now, the spacecraft has been operating smoothly.

The purpose of Hayabusa2#

- Long-term operation of spacecraft in space (more than 11 years longer than the plan)
- ➢ Fast flyby operation ← basic technology for impactor
- ➤ Exploration of a very small (size ~30m) asteroid ← basic information for very small NEOs