

Orbital and Sky-plane Uncertainties for NEO Surveyor Discoveries: Preliminary Update

T. Spahr, A. Mainzer, V. Reddy, S. Sonnett, E. Lilly, R. Cutri, J. Masiero, M. Holman, M. Payne, F. Spoto, P. Veres, M. Pan

The NEO Surveyor Mission—See talk by A. Mainzer for full details

Images Courtesy NEO Surveyor Mission

Simulating to evaluate orbital uncertainty

- Run 5 and 10-year survey simulations with current best estimates for NEO and MBA populations
- Full simulation using simulated star background, spacecraft positional uncertainty, astrometric uncertainty
- Assuming only NEO Surveyor detections with full understanding any other detections will improve orbit quality
- The MPC will assemble tracks from tracklets and compute orbits; will also measure time required for linking operations
- Note the MPC has already performed similar tests for Rubin/LSST team so the machinery is in place

What we'll Evaluate

- Track objects from shortest arcs (6-12 day full observation span) through multi-year arcs
- Will separate NEOs from MBAs so they can be studied separately
- Tabulate both sky-plane and orbital element uncertainties by arc length and object type

Current Status

- First MBA simulations have been completed
- Preliminary NEO simulations also completed
- Verifying ephemeris accuracy/precision for both simulated spacecraft and minor planet ephemerides
- Track and tracklet-generating definitions verified
- MPC is ready for data to evaluate interface & orbits
- Results expected late Summer 2021