Identifying possible bias in astrometric observations of potentially hazardous asteroids and other high risk near-Earth objects

Anatoliy Ivantsov^{1,2,3}, Siegfried Eggl^{3,4,5,6}, Daniel Hestroffer³

 ¹Space Sciences & Technologies Department, Science Faculty, Akdeniz University, Antalya, Turkey ²Royal Observatory of Belgium, Ringlaan / av. Circulaire 3, Brussels, BE-1180, Belgium
³Paris Observatory – IMCCE, PSL University, Sorbonne Université, Lille University, CNRS, av. Denfert-Rochereau 77, Paris, F-75014, France
⁴Department of Astronomy, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA ⁵Vera C. Rubin Observatory, Tucson, AZ 85719, USA
⁶Department of Aerospace Engineering, University of Illinois at Urbana, Champaign, 306 Talbot Laboratory, 104 S. Wright St., Urbana, IL 61801, USA

an.ivantsov@gmail.com

< □ > < □ > < □ > < □ > < □ > < □ >

A problem in measurement of image positions with overlapping profiles

(a) Two resolved sources with overlapping profiles

(b) Vertical section along maxima of Gaussian profiles

< □ > < □ > < □ > < □ > < □ > < □ >

Ivantsov, Eggl, Hestroffer

PDC2021

April 26-30, 2021 2 / 8

Impact risk objects taken from the JPL Sentry System

Impact probability $\geq 10^{-6}$, impact value ≥ -4 in the Palermo scale as of Jan. 18, 2021

No.	Asteroid	MOID,	RMS,	Total	Data-arc
	designation	a.u.	//	obs.	span, day
1	(29075)	4.0×10^{-2}	0.48	732	25897
2	(99942) Apophis	9.1×10^{-5}	0.28	4716	6148
3	(101955) Bennu	3.2×10^{-3}	0.28	518	6821
4	1994 GK*	3.0×10^{-3}	1.04	11	3
5	2000 SB45*	1.3×10^{-3}	0.52	18	2
6	2000 SG344*	8.0×10^{-4}	0.51	31	507
7	2005 ED224*	1.4×10^{-3}	0.40	11	3
8	2005 QK76*	1.8×10^{-3}	0.82	14	1
9	2007 DX40*	6.8×10^{-4}	0.52	30	9
10	2007 FT3	$1.5 imes 10^{-2}$	0.41	14	1
11	2008 EX5*	$6.1 imes 10^{-4}$	0.57	61	33
12	2008 JL3*	1.1×10^{-3}	0.37	35	7
13	2008 UB7*	9.6×10^{-4}	0.40	69	5
14	2009 JF1*	1.0×10^{-4}	0.28	25	1
15	2010 RF12*	6.9×10^{-4}	0.28	323	5
16	2012 HG2*	5.6×10^{-5}	0.40	210	39
17	2012 QD8*	2.2×10^{-3}	0.33	41	20
18	2013 VW13*	2.0×10^{-3}	0.40	34	21
19	2017 WT28*	2.1×10^{-3}	0.44	28	19
20	2020 VV*	$9.9 imes 10^{-5}$	0.50	79	61
21	2020 VW*	1.6×10^{-5}	0.36	20	15
22	2021 AL6**	$9.1 imes 10^{-3}$	0.42	55	6

3

(日) (四) (日) (日) (日)

_

Cumulative number of possibly affected asteroid positions in the vicinity of the Gaia EDR3 stars

No.	Asteroid	Vicinity radii, ''					
	designation	1	3	5	7	9	
1	(29075)	3	15	27	50	83	
2	(99942) Apophis	39	283	693	1211	1735	
3	(101955) Bennu	2	10	29	53	95	
4	1994 GK*	0	0	0	0	0	
5	2000 SB45*	0	0	0	1	2	
6	2000 SG344*	0	1	1	3	5	
7	2005 ED224*	0	0	1	1	1	
8	2005 QK76*	0	0	0	0	1	
9	2007 DX40*	0	0	0	0	1	
10	2007 FT3	0	1	3	6	11	
11	2008 EX5*	0	0	0	1	5	
12	2008 JL3*	0	4	6	10	16	
13	2008 UB7*	0	2	2	2	2	
14	2009 JF1*	0	1	1	2	4	
15	2010 RF12*	0	4	9	15	30	
16	2012 HG2*	1	5	10	21	40	
17	2012 QD8*	0	1	2	2	5	
18	2013 VW13*	0	0	0	0	0	
19	2017 WT28*	0	0	0	1	1	
20	2020 VV*	0	1	2	2	6	
21	2020 VW*	0	0	0	0	1	
22	2021 41 6**	0	0	1	3	3	

Ivantsov, Eggl, Hestroffer

April 26-30, 2021 4 / 8

3

イロト イポト イヨト イヨト

Direction to the nearby star (S) within 5" and $\overrightarrow{CO} = \overrightarrow{i}(O - C)_{\alpha} \cos \delta + \overrightarrow{j}(O - C)_{\delta}$

60 $\sin \phi = \frac{\overrightarrow{OS} \wedge \overrightarrow{CO}}{\left|\overrightarrow{OS}\right| \left|\overrightarrow{CO}\right|}$ 50 40 30 $\cos \phi = \frac{\overrightarrow{OS} \cdot \overrightarrow{CO}}{\left|\overrightarrow{OS}\right| \left|\overrightarrow{CO}\right|}$ 20 10 0 -150-100-50 50 100 0 150

70

Ivantsov, Eggl, Hestroffer

PDC2021

April 26-30, 2021 5 / 8

 ϕ , degrees

< □ > < □ > < □ > < □ > < □ > < □ >

Astrometric bias is found as $\sigma W_r(\frac{a}{\sigma}, \Delta m)$

(a) Resolved and unresolved cases, $\sigma = 2''$ (b) Photocenter bias of the target, $\sigma = 2''$

Fitting the astrometric bias to \overrightarrow{CO}

- We considered only those measurements that have $|\phi_i| \leq 90^\circ$ (2047 positions).
- We fitted Gaussian widths for 197 individual groups of observations.
- Visual magnitudes of asteroids were used instead of the actual, if the latter were not reported.

Conclusions

- Accurate astrometry of asteroids and other small Solar System bodies can be corrected for astrometric bias originated due to image blending. The **proximity of an asteroid to a nearby star in the focal plane can be characterized by** $\frac{a}{\sigma}$ where *a* is the distance and σ is the width of the PSF. The difference in brightness to nearby stars (Δm) is color-dependent. Correcting the bias described requires observations to be done in **standard photometric** bands.
- Since the **PSF** width σ can depend on many factors, we recommend it **be measured and reported by the observers** while submitting the measurements to the IAU Minor Planet Center.
- Past astrometric observations of asteroids measured close to the stars are likely biased. We recommend these measurements be down-weighted or eliminated from the orbit fitting process.

< □ > < 同 > < 回 > < 回 > < 回 >