

Assembled Kinetic Impactor (AKI) for Deflecting Asteroids via Combining Spacecraft with Launch Vehicle Upper Stage

Yirui Wang, Mingtao Li, Zizheng Gong, Jianming Wang, Chuankui Wang, Binghong Zhou

Chinese Academy of Sciences National Space Science Center

7th IAA Planetary Defense Conference VIENNA, AUSTRIA April 2021

Contents

Research Backgrounds

Tunguska Event (1908) 50-m-diameter

2,000 square kilometers of forest were destroyed

Chelyabinsk Event (2013) 20-m-diameter

1500 people were injured,3,000 houses were damaged

2019 OK (2019-7-25) 60-m-diameter

Flyby Earth at a height of 65,000 km

- > Nuclear Explosion: Efficient but controversial
- Kinetic Impactor: Feasible but not efficient (for large asteroids)

□ To deflect a large asteroid, the deflection performance of a kinetic impactor is limited.

(Barbee, 2018)

D Reversal orbit, H-reversal orbit concepts are used to improved deflection efficiency.

Concept of Assembled Kinetic Impactor

□ The upper stage can be used as a payload to improve the mass of the impactor

- The mass of Long March 5 upper stage: 6.5 tons

Compare Assembled Kinetic Impactor (AKI) with Classic Kinetic Impactor (CKI)

Deflection performance in a 10-year launch lead-time:

- 1. Maximum deflection distance of a single impactor
- 2. Minimum number of launches of 1.4 RE deflection distance
- Dynamic model

$$\frac{d^{2}\boldsymbol{r}}{dt^{2}} = -\frac{\mu_{s}}{|\boldsymbol{r}|^{3}}\boldsymbol{r} - \sum_{i=1}^{8} \mu_{pi} \left(\frac{1}{|\boldsymbol{d}_{pi}|^{3}} \boldsymbol{d}_{pi} + \frac{1}{|\boldsymbol{\rho}_{pi}|^{3}} \boldsymbol{\rho}_{pi}\right) + \boldsymbol{a}_{moon} + \boldsymbol{a}_{GR} + \boldsymbol{a}_{SRP} + \boldsymbol{a}_{YE}$$

Impact model

$$\Delta \boldsymbol{v}_{Ast} \approx \beta \frac{m_{AKI}}{m_{AKI} + m_{Ast}} (\boldsymbol{v}_{AKI} - \boldsymbol{v}_{Ast})$$

Optimization methods: Genetic Algorithm + Sequential Quadratic Programming

Deflection Object: Bennu

Diameter: 492 m

Mass: 7.9x10¹⁰ kg

Closest Approach Date: 2135-9-25

Closest Approach Distance: 0.00199 AU

Ephemeris: JPL Horizons On-Line Ephemeris System

(Image Credit: OSIRIS-REx)

Launch Vehicle: Long March 5

Dry mass of upper stage: 6.5 tons Fairing diameter: 5.2 m Fairing height: 12.7 m

□ Maximum deflection distance of a single impactor

	CKI (Without Upper stage)	AKI (With Upper stage)
Launch Vehicle	CZ-5	CZ-5
Number of Launches	1	1
C3	13.75 km²/s²	42.89 km ² /s ²
Impactor Mass	5.09 tons	8.75 tons
Spacecraft Mass	5.09 tons	2.25 tons
Launch Date	2125-1-13 9:7:34	2125-1-27 6:44:25
Flight Time	651.14 days	1057.31 days
Impact Date	2126-10-26 12:24:19	2127-12-20 14:9:41
Impact Velocity	4.15 km/s	7.17 km/s
Bennu ∆v	0.27 mm/s	0.79 mm/s
Deflection Time	3256.89 days	2836.82 days
Deflection Distance	113.57 km	399.34 km

Compared with the CKI, the addition of the upper stage mass can increase the deflection distance to more than 3 times.

□ Minimum number of launches of 1.4 RE deflection distance

	CKI (Without Upper stage)	AKI (With Upper stage)
Launch Vehicle	CZ-5	CZ-5
Number of Launches	79	23
С3	13.78 km2/s2	43.00 km2/s2
Impactor Mass	401.41 tons	200.96 tons
Launch Date	2125-1-12 1:6:5	2125-1-26 14:27:40
Flight Time	651.65 days	1056.72 days
Impact Date	2126-10-25 16:44:14	2127-12-19 7:45:45
Impact Velocity	4.15 km/s	7.15 km/s
Bennu ∆v	21.08 mm/s	18.18 mm/s
Deflection Time	3257.71 days	2838.08 days
Deflection Distance	1.41 Re (8988.86 km)	1.45 Re (9224.73 km)

Compared with the CKI, the addition of the upper stage mass can reduce the required number of launches from 79 to 23 for the CZ-5.

Deflection performance of a 140 m diameter asteroid with a 10-year launch lead-time

	CKI (Without Upper stage)	AKI (With Upper stage)
Launch Vehicle	CZ-5	CZ-5
Number of Launches	1	1
С3	13.76 km²/s²	42.94 km²/s²
Impactor Mass	5.08 tons	8.74 tons
Launch Date	2125-1-13 23:55:12	2125-1-26 18:33:17
Flight Time	651.37 days	1057.26 days
Impact Date	2126-10-27 8:49:55	2127-12-20 0:43:30
Impact Velocity	4.15 km/s	7.16 km/s
Bennu Δv	11.65 mm/s	34.57 mm/s
Deflection Time	3256.04 days	2837.38 days
Deflection Distance	0.78 Re (4965.44 km)	2.75 Re (17538.81 km)

- A single CKI can't achieve a deflection distance of 1 Earth radii, which cannot eliminate the threat of the asteroid impact.
- > A single AKI can achieve a deflection distance of 2.75 Earth radii.

□ Challenges

- avoid the coupling of attitude control and orbit control;
- the center of mass of the AKI is located on the upper stage;
- prevent the thruster plumes from affecting the solar arrays and upper stage

(Image Credit: LCROSS)

Analysis diagram of the thruster plumes

An AKI platform is preliminarily designed

The **Assembled Kinetic Impactor (AKI)** is proposed, the missions of deflecting Bennu are designed to demonstrate the power of the AKI concept. Based on the technical data of the Long March 5 (CZ-5) launch vehicle, compared with the Classic Kinetic Impactor (CKI):

- The AKI concept can greatly improve the deflection efficiency, reduce the launch cost;
- The deflection distance of a 140 m diameter asteroid within 10 years, can be increased from less than 1 Earth radii to more than 1 Earth radii.

Thanks for Your Attention!

wangyirui17@mails.ucas.ac.cn

National Space Science Center