7th IAA PDC Conference 2021 – paper 172 e-Lightning Talk April 30th 2021

"THE EFFECT OF NEAS INTERNAL STRUCTURE ON PARTICLE DYNAMICS: A WAY TO SEARCH FOR STABLE ORBITS AROUND ASTEROID DIDYMOS"

> Dr S. Soldini (Presenter) Stefania.Soldini@Liverpool.ac.uk

Dr. F. Ferrari, Dr. Y. Zhang, Dr. O. Karatekin, Dr. L. Pou, Dr. N. Rambaux, Dr. A. Campo-Bagatin, Dr H. Ikeda, K. Wada, and Y. Tsuda

Dynamics Simulation: the Role of the Internal Mass Structure

Today's topic: what are we looking for?

- Didymos is the main case study presented here however our approach can easily applied to any irregular object
- We are interested in comparing several internal structures by computing the following:
 - Stokes Coefficients (up to order 5)

- Equilibrium points (stationary points of the effective potential)

Today's topic: Uniform Distribution

- 1. We will compare the shape model (uniform density) with Mascons model and we will change the following parameters:
 - Bulk density (2170 \pm 350 kg/m³)
 - Decrease in Spin axis period $(T = 2.26 h \text{ (nominal)} \rightarrow 2.43 h)$
 - Resolution (number of mascons considered)

10K Mascons

- Bulk density (2520 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

Nominal Density + Nominal Axis Period **High Resolution**

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.43 h)
- Resolution (6.6M)

n,m	Cnm	Snm
1,0	-5.2223E-06	0.0000E+00
1,1	5.3885E-06	-4.8848E-06
2,0	-6.5039E-03	0.0000E+00
2,1	-4.6831E-06	-2.1131E-06
2,2	2.7829E-03	1.1593E-06
3,0	-9.2689E-04	0.0000E+00
3,1	-1.2076E-03	6.3516E-03
3,2	1.4265E-03	-2.3941E-03
3,3	8.0600E-04	-1.0271E-03
4,0	3.9763E-03	0.0000E+00
4,1	-8.6027E-04	2.6661E-03
4,2	-5.3501E-05	1.1508E-03
4,3	2.0248E-03	3.1011E-03
4,4	1.5731E-03	-2.2534E-04
5,0	-6.2547E-04	0.0000E+00
5,1	1.2676E-04	5.5753E-04
5,2	-1.1650E-04	-7.0422E-04
5,3	-6.5566E-04	1.2492E-03
5,4	-4.7234E-04	-8.7195E-05
5,5	4.5592E-05	6.5807E-04

Nominal Density Nominal Axis Period + High Resolution

EQ2

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.43 h)
- Resolution (6.6M)

n,m	Cnm	Snm
1,0	-5.2223E-06	0.0000E+00
1,1	5.3885E-06	-4.8848E-06
2,0	-6.5039E-03	0.0000E+00
2,1	-4.6831E-06	-2.1131E-06
2,2	2.7829E-03	1.1593E-06
3,0	-9.2689E-04	0.0000E+00
3,1	-1.2076E-03	6.3516E-03
3,2	1.4265E-03	-2.3941E-03
3,3	8.0600E-04	-1.0271E-03
4,0	3.9763E-03	0.0000E+00
4,1	-8.6027E-04	2.6661E-03
4,2	-5.3501E-05	1.1508E-03
4,3	2.0248E-03	3.1011E-03
4,4	1.5731E-03	-2.2534E-04
5,0	-6.2547E-04	0.0000E+00
5,1	1.2676E-04	5.5753E-04
5,2	-1.1650E-04	-7.0422E-04
5,3	-6.5566E-04	1.2492E-03
5,4	-4.7234E-04	-8.7195E-05
5,5	4.5592E-05	6.5807E-04

Nominal Density Nominal Axis Period + High Resolution

EQ2

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.43 h)
- Resolution (10K)

NIVERSITY

Nominal Density
Nominal Axis Period
Lower Resolution

n,m	Cnm	Snm
1,0	-8.7059E-05	0.0000E+00
1,1	1.1193E-04	-7.4207E-04
2,0	-7.0977E-03	0.0000E+00
2,1	5.2901E-04	-3.2507E-04
2,2	2.6010E-03	-2.4390E-04
3,0	-1.0355E-03	0.0000E+00
3,1	-1.0654E-03	6.0389E-03
3,2	1.4277E-03	-2.4555E-03
3,3	9.0424E-04	-9.5631E-04
4,0	3.6600E-03	0.0000E+00
4,1	-7.0691E-04	2.5232E-03
4,2	1.4787E-05	1.3160E-03
4,3	2.1417E-03	3.0439E-03
4,4	1.3132E-03	-1.6104E-04
5,0	-4.0657E-04	0.0000E+00
5,1	6.6249E-05	2.2158E-04
5,2	-1.2408E-05	-6.1133E-04
5,3	-5.4074E-04	1.2779E-03
5,4	-4.2679E-04	-3.4040E-05
5,5	-5.5084E-05	5.7477E-04

ΟF

- Bulk density (1820 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

n,m	Cnm	Snm
1,0	-5.2223E-06	0.0000E+00
1,1	5.3885E-06	-4.8848E-06
2,0	-6.5039E-03	0.0000E+00
2,1	-4.6831E-06	-2.1131E-06
2,2	2.7829E-03	1.1593E-06
3,0	-9.2689E-04	0.0000E+00
3,1	-1.2076E-03	6.3516E-03
3,2	1.4265E-03	-2.3941E-03
3,3	8.0600E-04	-1.0271E-03
4,0	3.9763E-03	0.0000E+00
4,1	-8.6027E-04	2.6661E-03
4,2	-5.3501E-05	1.1508E-03
4,3	2.0248E-03	3.1011E-03
4,4	1.5731E-03	-2.2534E-04
5,0	-6.2547E-04	0.0000E+00
5,1	1.2676E-04	5.5753E-04
5,2	-1.1650E-04	-7.0422E-04
5,3	-6.5566E-04	1.2492E-03
5,4	-4.7234E-04	-8.7195E-05
5,5	4.5592E-05	6.5807E-04

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

n,m 1,0

1.1

2,0

2,1

2,2

3.0

3.1

3.2

3,3

4.0

4,1

4.2

4.3

4,4

5,0

5.1

5,2

5,3

5,4

5.5

Nominal Density Nominal Axis Period High Resolution

Today's topic: Radial Distribution

2. We have changed the internal density distribution by maintaining the nominal bulk density (2170 kg/m^3):

Result: Radial Distribution

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

Nominal Density
Nominal Axis Period
High Resolution

n,m	Cnm	Snm
1,0	-1.4306E-04	0.0000E+00
1,1	-5.6774E-05	1.5530E-04
2,0	-4.0483E-03	0.0000E+00
2,1	-4.3463E-05	-1.9870E-05
2,2	1.7299E-03	-1.8330E-05
3,0	-6.5427E-04	0.0000E+00
3,1	-7.4386E-04	3.9340E-03
3,2	8.6664E-04	-1.4319E-03
3,3	4.6819E-04	-5.8745E-04
4,0	2.3901E-03	0.0000E+00
4,1	-5.2484E-04	1.6972E-03
4,2	-4.3851E-06	7.3502E-04
4,3	1.3013E-03	1.9277E-03
4,4	9.5632E-04	-1.0390E-04
5,0	-3.9148E-04	0.0000E+00
5,1	4.5656E-05	3.7608E-04
5,2	-6.0368E-05	-4.0504E-04
5,3	-3.8769E-04	7.3450E-04
5,4	-2.9427E-04	-4.9974E-05
5,5	1.8948E-05	3.9229E-04

Result: Radial Distribution + Void

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

n,m	Cnm	Snm
1,0	-4.4860E-04	0.0000E+00
1,1	1.6475E-03	1.5813E-04
2,0	-3.8541E-03	0.0000E+00
2,1	6.8964E-05	-1.0053E-05
2,2	1.5006E-03	-2.0121E-05
3,0	-6.3119E-04	0.0000E+00
3,1	-8.1713E-04	3.9705E-03
3,2	8.5088E-04	-1.4490E-03
3,3	4.9509E-04	-5.8719E-04
4,0	2.3969E-03	0.0000E+00
4,1	-5.4086E-04	1.7112E-03
4,2	7.6362E-06	7.4010E-04
4,3	1.3152E-03	1.9464E-03
4,4	9.6787E-04	-1.0826E-04
5,0	-3.9786E-04	0.0000E+00
5,1	5.0259E-05	3.7903E-04
5,2	-5.8372E-05	-4.0779E-04
5,3	-3.9206E-04	7.4055E-04
5,4	-2.9614E-04	-5.1285E-05
5,5	1.5988E-05	3.9728E-04

Nominal Density Nominal Axis Period High Resolution

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

n,m 1,0

1.1

2,0

2,1

2,2

3.0

3.1

3.2

3,3

4.0

4,1

4.2

4.3

4,4

5,0

5.1

5,2

5,3

5,4

5.5

Nominal Density Nominal Axis Period High Resolution

Today's topic: "M"ono/"P"oly Disperse "U"niform

3. We have used polyhedron shaped with different sizes and considered them as point masses to find the equivalent masons model by maintaining the nominal bulk density (2170 kg/m^3):

MU

PU

(Credit Fabio Ferrari)

Result: MU

- Bulk density (2170 kg/m^3) -
- Spin axis period (T = 2.26 h)-
- Resolution (9.5k) -

Nominal Density Nominal Axis Period Low Resolution

-0.5

0

y [km]

0.5

0

x [km]

-0.5 0.5

n,m	Cnm	Snm	Cnm(10k unif)-Cnm(9.5k)	Snm(10k unif)-Snm(9.5k)
1,0	3.6721E-04	0.0000E+00	-4.5427E-04	0.0000E+00
1,1	-2.0762E-04	4.9779E-04	3.1956E-04	-1.2399E-03
2,0	-5.5453E-03	0.0000E+00	-1.5524E-03	0.0000E+00
2,1	-1.6583E-04	-1.6280E-04	6.9484E-04	-1.6227E-04
2,2	2.3856E-03	-1.8619E-04	2.1535E-04	-5.7715E-05
3,0	-9.2846E-04	0.0000E+00	-1.0701E-04	0.0000E+00
3,1	-9.1569E-04	5.3616E-03	-1.4975E-04	6.7736E-04
3,2	1.2507E-03	-2.2590E-03	1.7703E-04	-1.9654E-04
3,3	9.3459E-04	-8.8126E-04	-3.0352E-05	-7.5050E-05
4,0	3.2405E-03	0.0000E+00	4.1945E-04	0.0000E+00
4,1	-8.7001E-04	2.2062E-03	1.6310E-04	3.1697E-04
4,2	1.4450E-04	1.0102E-03	-1.2971E-04	3.0585E-04
4,3	1.6860E-03	2.7568E-03	4.5572E-04	2.8704E-04
4,4	1.3470E-03	-2.3923E-04	-3.3784E-05	7.8188E-05
5,0	-6.1733E-04	0.0000E+00	2.1075E-04	0.0000E+00
5,1	2.7473E-04	2.4288E-04	-2.0848E-04	-2.1292E-05
5,2	-2.8672E-05	-6.5279E-04	1.6264E-05	4.1469E-05
5,3	-4.9058E-04	9.3405E-04	-5.0165E-05	3.4381E-04
5,4	-4.3238E-04	-4.1981E-05	5.5864E-06	7.9412E-06
5,5	8.3436E-05	4.8030E-04	-1.3852E-04	9.4474E-05

Result: PU

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (8.3k)

Nominal Density Nominal Axis Period Low Resolution

			Cnm(10k unif)-	Snm(10k unif)-	Cnm(9.5K MU)-	Snm(9.5K MU)-
n,m	Cnm	Snm	Cnm(8.3k PU)	Snm(8.3k PU)	Cnm(8.3k PU)	Snm(8.3k PU)
1,0	-3.1213E-03	0.0000E+00	3.0343E-03	0.0000E+00	3.4886E-03	0.0000E+00
1,1	3.7507E-03	2.8917E-03	-3.6388E-03	-3.6338E-03	-3.9583E-03	-2.3939E-03
2,0	6.0230E-04	0.0000E+00	-7.7000E-03	0.0000E+00	-6.1476E-03	0.0000E+00
2,1	-2.1525E-03	4.7461E-04	2.6815E-03	-7.9968E-04	1.9867E-03	-6.3741E-04
2,2	1.5820E-03	-4.6686E-04	1.0189E-03	2.2296E-04	8.0358E-04	2.8067E-04
3,0	1.5292E-03	0.0000E+00	-2.5647E-03	0.0000E+00	-2.4577E-03	0.0000E+00
3,1	-1.2414E-03	5.6999E-03	1.7600E-04	3.3898E-04	3.2575E-04	-3.3838E-04
3,2	1.3284E-03	-1.7792E-03	9.9292E-05	-6.7630E-04	-7.7734E-05	-4.7976E-04
3,3	-5.8407E-04	-1.1850E-03	1.4883E-03	2.2870E-04	1.5187E-03	3.0375E-04
4,0	3.5036E-03	0.0000E+00	1.5632E-04	0.0000E+00	-2.6312E-04	0.0000E+00
4,1	-2.1462E-03	1.9163E-03	1.4393E-03	6.0688E-04	1.2762E-03	2.8992E-04
4,2	-4.9409E-04	2.7831E-04	5.0888E-04	1.0377E-03	6.3859E-04	7.3188E-04
4,3	6.9293E-04	1.9973E-03	1.4487E-03	1.0466E-03	9.9303E-04	7.5958E-04
4,4	1.5051E-03	8.2099E-05	-1.9185E-04	-2.4314E-04	-1.5806E-04	-3.2133E-04
5,0	4.5467E-04	0.0000E+00	-8.6124E-04	0.0000E+00	-1.0720E-03	0.0000E+00
5,1	-8.3000E-04	1.1568E-03	8.9625E-04	-9.3524E-04	1.1047E-03	-9.1394E-04
5,2	9.9046E-05	-8.5957E-04	-1.1145E-04	2.4824E-04	-1.2772E-04	2.0677E-04
5,3	1.1460E-04	7.1380E-04	-6.5535E-04	5.6406E-04	-6.0518E-04	2.2026E-04
5,4	2.8652E-04	8.5249E-05	-7.1331E-04	-1.1929E-04	-7.1889E-04	-1.2723E-04
5,5	-5.5496E-04	5.4920E-04	4.9988E-04	2.5574E-05	6.3840E-04	-6.8900E-05

Result: PU

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (8.3k)

Nominal Density Nominal Axis Period Low Resolution

Today's topic: "M"ono/"P"oly Disperse "U"niform

3. We have used polyhedron shaped with different sizes and considered them as point masses to find the equivalent masons model by maintaining the nominal bulk density (2170 kg/m^3):

MU

PU

 $\times 10^9$

6

5

4 mass [kg]

2

1

Today's topic: Mono Disperse Uniform Solid Core

4. We have used polyhedron shaped and considered them as point masses to find the equivalent mascons model by maintaining the nominal bulk density (2170 kg/m^3):

Result: MUS

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6k)

			Cnm(10k core)-	Snm(10k core)-
n,m	Cnm	Snm	Cnm(6k MUS)	Snm(6k MUS)
1,0	4.0905E-04	0.0000E+00	-5.4445E-04	0.0000E+00
1,1	3.6767E-04	1.8251E-04	-2.6804E-04	-8.8469E-04
2,0	-5.4364E-03	0.0000E+00	-1.4682E-03	0.0000E+00
2,1	-1.7106E-04	-3.8068E-05	6.7347E-04	-2.7654E-04
2,2	2.4798E-03	-1.6856E-04	7.0161E-05	-7.2718E-05
3,0	-9.6459E-04	0.0000E+00	-3.1674E-05	0.0000E+00
3,1	-9.4927E-04	5.3589E-03	-8.9607E-05	4.5859E-04
3,2	1.2324E-03	-2.2831E-03	1.4309E-04	-8.1345E-05
3,3	9.7327E-04	-8.9284E-04	-1.0187E-04	-3.5898E-05
4,0	3.2639E-03	0.0000E+00	2.4809E-04	0.0000E+00
4,1	-8.6784E-04	2.1905E-03	1.9050E-04	2.3095E-04
4,2	1.3760E-04	1.0121E-03	-1.1855E-04	2.5078E-04
4,3	1.6847E-03	2.7424E-03	3.6904E-04	1.8088E-04
4,4	1.3218E-03	-2.0494E-04	-5.2259E-05	4.9989E-05
5,0	-5.9751E-04	0.0000E+00	2.0945E-04	0.0000E+00
5,1	2.8123E-04	2.5533E-04	-2.1641E-04	-4.3422E-05
5,2	-3.6510E-05	-6.5907E-04	2.5962E-05	7.5894E-05
5,3	-4.7534E-04	9.3464E-04	-4.3976E-05	2.8515E-04
5,4	-4.2213E-04	-4.2853E-05	1.0162E-05	7.9738E-06
5,5	8.3791E-05	4.7362E-04	-1.3425E-04	7.4265E-05

Nominal Density Nominal Axis Period Low Resolution

Today's topic: Mono Disperse Uniform Core

5. Fith, we have compared with a core model with multi mascons model by maintaining the nominal bulk density (2170 kg/m^3):

Result: uniform Core

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (10k)

n,m	Cnm	Snm	Cnm(6.6m)-Cnm(10k)	Snm(6.6m)-Snm(10k)
1,0	-1.3540E-04	0.0000E+00	1.2949E-04	0.0000E+00
1,1	9.9634E-05	-7.0218E-04	-9.4244E-05	6.9727E-04
2,0	-6.9046E-03	0.0000E+00	5.7982E-04	0.0000E+00
2,1	5.0241E-04	-3.1461E-04	-5.0711E-04	3.1233E-04
2,2	2.5500E-03	-2.4128E-04	1.5620E-04	2.4199E-04
3,0	-9.9626E-04	0.0000E+00	1.0220E-04	0.0000E+00
3,1	-1.0389E-03	5.8175E-03	-1.2613E-04	3.0913E-04
3,2	1.3755E-03	-2.3645E-03	5.9830E-07	5.5189E-05
3,3	8.7140E-04	-9.2874E-04	-9.3898E-05	-6.2033E-05
4,0	3.5120E-03	0.0000E+00	3.0201E-04	0.0000E+00
4,1	-6.7734E-04	2.4215E-03	-1.4785E-04	1.3578E-04
4,2	1.9052E-05	1.2629E-03	-7.0477E-05	-1.5908E-04
4,3	2.0538E-03	2.9233E-03	-1.1169E-04	5.1222E-05
4,4	1.2696E-03	-1.5495E-04	2.3926E-04	-6.1237E-05
5,0	-3.8806E-04	0.0000E+00	-2.0958E-04	0.0000E+00
5,1	6.4820E-05	2.1191E-04	5.6248E-05	3.2072E-04
5,2	-1.0547E-05	-5.8317E-04	-1.0074E-04	-8.9715E-05
5,3	-5.1932E-04	1.2198E-03	-1.0710E-04	-2.6189E-05
5,4	-4.1197E-04	-3.4879E-05	-3.9312E-05	-4.8416E-05
5,5	-5.0455E-05	5.4788E-04	9.3953E-05	8.0847E-05

Result: uniform Core

- Bulk density (2170 kg/m^3)
- Spin axis period (T = 2.26 h)
- Resolution (6.6M)

Nominal Density Nominal Axis Period High Resolution

Cnm Snm n,m 1.0 -5.9134E-06 0.0000E+00 1,1 5.3905E-06 -4.9074E-06 2,0 -6.3248E-03 0.0000E+00 2,1 -4.6999E-06 -2.2770E-06 2,2 2.7062E-03 7.0842E-07 3.0 -8.9407E-04 0.0000E+00 3.1 -1.1650E-03 6.1266E-03 3.2 1.3761E-03 -2.3093E-03 3.3 7.7751E-04 -9.9077E-04 4.0 3.8140E-03 0.0000E+00 4,1 -8.2520E-04 2.5573E-03 4.2 -5.1425E-05 1.1038E-03 4.3 1.9421E-03 2.9745E-03 4.4 1.5088E-03 -2.1619E-04 5.0 -5.9763E-04 0.0000E+00 5,1 1.2107E-04 5.3263E-04 5.2 -1.1129E-04 -6.7289E-04 5.3 -6.2642E-04 1.1936E-03 5.4 -4.5128E-04 -8.3296E-05 5,5 4.3499E-05 6.2873E-04

Comparison CoM

	x [m]	y [m]	z [m]
Mesh Lab	0.00E+00	0.00E+00	0.00E+00
Radius 6.6M	-3.84E-02	1.05E-01	-9.66E-02
Radius Void 6.6M	1.11E+00	1.07E-01	-3.03E-01
Uniform 6.6M	3.64E-03	-3.30E-03	-3.53E-03
Unif Min 6.6M	3.64E-03	-3.30E-03	-3.53E-03
Unif Max 6.6M	3.64E-03	-3.30E-03	-3.53E-03
Core 6.6M	3.64E-03	-3.32E-03	-3.99E-03
MU	-1.40E-01	3.36E-01	2.48E-01
MUS	2.48E-01	1.23E-01	2.76E-01
PU	2.53E+00	1.95E+00	-2.10E+00

x [m]y [m]z [m]err x [m]err y [m]err z [m]Radius 10k-2.97E-02-2.04E-01-2.96E-01-8.65E-033.09E-011.99E-01Radius Void 10k1.19E+00-2.32E-01-4.69E-01-7.68E-023.38E-011.66E-01Unif 10k7.56E-02-5.01E-01-5.88E-02-7.20E-024.98E-015.53E-02Unif Min 10k6.73E-02-5.01E-01-5.88E-02-7.20E-024.98E-015.53E-02Unif Max 10k7.56E-02-5.01E-01-5.88E-02-7.20E-024.98E-015.53E-02Core 10K7.56E-02-5.01E-01-5.88E-02-7.20E-024.98E-015.48E-02

Key Facts

- In case of uniform body: The measurement of the Stokes Coefficient alone will not be able to uniquely determine the bulk density and rotation period
- In case of uniform body: The measurement of the EQ points alone will not be able to determine the exact density or rotation period
- Likely Didymos period is well know so having fixed this parameter means that both stocks coefficients and EQ points measurement could determine the internal structure of the object thus its mass distribution
- Mascons resolution affects our ability to compute the EQ points with semianalytical methods
- Mascons resolution affects the value of the stock coefficients
- Voids can be easily detected by either stokes coefficient measurements or EQ points measurements (due to the shift in the CoM)
- We used the uniform case and polyhedron model/shape model to fix the resolution needed by comparing the error in the EQ points computed
- While uncertainties in mass distribution, bulk density and period affects the number of EQ points of didymos so far it seems that at least there is one equilibrium point likely to exist EQ1 of center x center x center nature (stable) and so orbits around this point can exist

Thank You!

