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For asteroid deflection using a nuclear device, simulating the energy 
deposition into an asteroid and the subsequent response poses notable 
modeling challenges. Energy is deposited into the asteroid in the form of 
thermal x-rays characterized by short mean-free paths, with lesser 
contributions from neutrons and gamma-rays characterized by longer mean-
free paths. The partitioning of these energies and their detailed spectra 
depend on the specifics of the device used, but it is sufficient to say that the 
output is dominated by soft thermal x-rays. This poses a challenge in asteroid 
deflection simulations that must resolve orders of magnitude in length scales 
ranging from micrometers (soft x-rays) to kilometers (asteroid) to accurately 
model the physics. To complicate matters further, deposition of soft thermal x-
ray energy is concentrated in the asteroid surface, and a significant amount of 
the deposited energy (up to 80-90%) is immediately lost to blackbody radiation 
before material can respond hydrodynamically.
In this ePoster we discuss the relative challenges, effectiveness and 
idiosyncrasies in modeling asteroid deflection using x-rays, neutrons and 
gamma rays. We find that soft thermal x-rays are the most abundant energy 
source in nuclear detonations and discuss challenges in numerical modeling of 
these deflection scenarios.
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Nuclear 
device

A standoff nuclear detonation melts 
and vaporizes material by depositing 
photons and neutrons into the asteroid 
surface. Superheated surface material 
is ejected and acts as a propellant to 
the asteroid.  The result is a ”push” 
with momenta equal and opposite to 
that of the melted and vaporized 
surface material. The direction and 
magnitude of this push is closely tied 
to how the incoming x-rays from the 
nuclear detonation (the dominant 
energy source) couple to the asteroid 
surface.

Asteroid

Image credit: Mike 
Owen using Spheral
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Neutron
(λmfp ~ 30 cm*)

Soft x-ray
(λmfp ~ 1 µm*)

Gamma
(λmfp ~ 5 cm*)

Paper Lead Concrete

* Approximate values through quartz at reference density

Vacuum

Although neutrons penetrate deeply and are ideal for 
melting and vaporizing asteroid material, they are not 
an abundant energy source in nuclear detonations.
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For example, 100 kt of fusion 
neutrons at a standoff 
distance of 100 m penetrates 
a meter of material, while an 
equivalent fluence of 1 keV x-
rays penetrates only a micron 
of material.

Neutrons, however, are not a 
dominant energy source in a 
nuclear detonation (the 
example of 100 kt of neutrons 
is not realistic). The dominant 
energy source are thermal x-
rays. They have the ability to
melt & vaporize material at 
low fluences and/or large 
standoff distances.10ï6 10ï5 10ï4 10ï3 10ï2 10ï1
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*Initial radiation spectra. Remaining energy is in the form of kinetic debris. (Glasstone & Dolan 1977)

0.75 2 4.5 8 12
Energy (MeV)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
-ra

y 
Ph

ot
on

s

Glasstone & Dolan 1977
a-Ray Spectrum

Gamma (< 1%)*X-ray (70-80%)* Neutron (< 3%)*

0.1 1.0 10.0
Energy (MeV)

1021

1022

1023

N
eu

tro
ns

/k
t

Glasstone & Dolan 1977
Neutron Spectra

Fission Weapon
Fusion Weapon

0.01       0.1         1         10
Energy (keV)

100

10-2

10-4

10-6

10-8

10-1010-10
 

10-8
 

10-6
 

10-4
 

10-2
 

100
 

0.01 0.1 1 10

Energy (keV)

Blackbody
 1.0 keV
 2.0 keV

Blackbody
1keV
2keV

ke
V

/k
t

Asteroid deflection using a standoff nuclear detonation is 
dominated by the physics of x-ray interactions with material
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The fraction of energy lost increases 
with fluence; hotter surfaces radiate 
away more energy. Over a range of 
realistic yields and stand off 
distances, energy loss due to 
reflections, scatters and blackbody 
radiation ranges from 20% ~ 80% 
(normal incidence). 

We define a realistic range of x-ray 
fluences to be 4.18×10-5 to 4.18×10-1

jerks/cm2. An example of a low 
fluence scenario is a 12.5kT device 
at a 100m standoff; an example of a 
high fluence scenario is the same 
12.5kT device at a 1m standoff.

Time (shakes)
*Kull simulation, includes source travel time through vacuum
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To address the computational 
challenges in modeling orders of 
magnitude in length scales, the energy 
coupling and initial surface material 
response can be modeled in Kull in 1D 
and then mapped onto 3D asteroid 
realizations in Spheral to predict 
deflection responses.

Image credit: Mike 
Owen using Spheral
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