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Abstract – Digital Twins (DT) currently get a lot of attention from various application areas. The DT notion originates 

from Product Lifecycle Management and is closely related to the Industry 4.0 context. Additionally, DT are frequently 

regarded from a simulation technology point of view. Therefore, an extended definition of the DT term and a concept for 

the interplay of simulation technology and DT is needed. This paper examines the combination of DT and simulation 

technology and focuses on the newly developed Experimentable Digital Twin (EDT) methodology. The key concept of 

this methodology is to link various EDT to a network of interacting EDT. Virtual Testbeds (VTB) bridge the gap between 

the EDT networks and simulation technology by applying various simulation algorithms. The feasibility and potential of 

this approach is demonstrated within various applications from the context of modular spacecraft. 
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INTRODUCTION 

 

Digital Twins (DT) are revolutionizing our view of systems. They are result and basis of digitization at the same time, 

because they are created by transforming physical assets into digital representations, and, on this basis, enable the 

digitization of processes, products and business models. In fact, so far, various definitions of the DT term can be found. 

It may be e.g. the virtual part of a Cyber-Physical System (CPS), an ultra-realistic system model, or a one-to-one replica 

of a CPS. In general, a DT describes its physical asset, predicts/controls its behaviour, and integrates it into surrounding 

systems/processes. DT are based on Digital Models developed during the engineering process and are continuously 

updated during operation (see Fig. 1). From the information technology point of view, the DT communicates with its 

asset during operation via internal and with its environment via external communication interfaces. In this way, the DT 

provides both a semantic entity and a structuring element for development and digitization of assets and workflows. In 

operation, the DT is the mediator both between assets and especially between humans and asset [11]. 

 

 
Fig. 1. The basic idea of the Digital Twin (based on [2]) 

 

From the perspective of simulation technology, the prediction of its behaviour is paramount. By applying simulation 

technology the DT becomes experimentable, becomes an Experimentable Digital Twin (EDT). EDTs integrate the 

different aspects on DTs mentioned above used for e.g. modelling, virtual AIT and simulation on system level. EDTs 

hierarchically model the artefacts making up the segments of a space system on different granularity levels by following 

the physical architecture of the space system and by considering the physical interfaces of each artefact, see also [3]. The 

modelling process results in an EDT Scenario, a network of EDTs (including all space systems involved as well as their 

environment) interacting with each other on an explicit (explicitly modelled interconnections via e.g. mechanical, thermal, 

electrical and data interfaces) or implicit level (e.g. collisions, targets of optical sensors) [3]. When staying on the EDT 

modelling level, the engineer can concentrate on the general architectural and functional aspects of the system. 



It is the task of so-called Virtual Testbeds (VTB) to execute EDT Scenarios, i.e. to bring EDT to life by applying e.g. 

simulation technology. Therefore, each EDT contains all the information necessary for different simulation algorithms 

like rigid/soft body dynamics, contact dynamics, sensor/actuator dynamics, orbital dynamics, solar radiance, data 

processing algorithms, different types of networks etc. To prepare the simulation, a VTB analyses the given network of 

EDTs, schedules the execution of the different simulation algorithms/simulators and executes the resulting 

experimentable model. (If possible) interactive simulations, extensive simulation logs and various tools for online/offline 

analysis give a deep insight into the system behaviour. To realize VTBs, a reference architecture has been developed 

consisting of a VTB Kernel (for real-time model management and communication), VTB Services (e.g. simulation 

algorithms and data interfaces), and VTB Run-time Environments to integrate VTB in execution environments like 

Desktop, VR/AR, Cave, real-time system, App, cloud service or co-simulation setups. 

 

Adding EDT-based methods and an EDT-based development workflow to the general EDT concept results in the EDT 

methodology providing a consistent set of methods, tools and workflows used throughout the life-cycle of systems. In 

this paper, the EDT methodology is applied to the development, virtual AIT and validation of modular spacecraft based 

on the iBOSS concept [4, 5]. The components of modular iBOSS spacecraft (so called iSATs) are integrated into 

standardized building blocks (iBLOCKs, intelligent Building Blocks) that are interconnected via standardized interfaces 

(iSSIs, intelligent Space System Interfaces, i.e. modular 4-in-1 interfaces (mechanical, electrical, thermal and data)). The 

major goals of the iBOSS concept are to ease and speed-up the development of spacecraft (from a technological and 

development process point-of-view), while at the same time reducing the costs of the spacecraft and increasing the 

flexibility of the overall development process (e.g. late integration). On the other hand, this modular approach increases 

the complexity of the spacecraft itself as well as the complexity of the development process. This challenge is targeted 

by the iBOSS development approach, where EDTs act as the central structuring element of the development process. 

 

The rest of the paper is organized as follows. The next chapter summarizes the state of the art in the field of simulation 

technology for spacecraft. The following three chapters introduce the EDT concept ending up with different perspectives 

on the same EDT, VTBs acting as run-time environments for EDTs and EDT-based development methods and workflows 

for the development of modular spacecraft. At the end, this paper illustrates the feasibility of the presented approach 

investigating different aspects developed and analysed using the EDT methodology. 

 

STATE-OF-THE-ART 

 

Capturing the state-of-the art of simulation technology is of multidimensional nature, as it has to be differed between 

generic simulation approaches, domain specific simulation tools and algorithms, complete simulation frameworks/plat-

forms and finally standards that are used and applied within these frameworks. Simulation approaches can be classified 

in equation-based simulation, signal-oriented simulations and discrete-event simulations. Equation-based simulation 

explicitly model the differential algebraic equations (DAE) and solve them based on numerical methods, like in Modelica 

[6] or Matlab [7]. Typically, these approaches are the foundation of most simulation algorithms. Signal-oriented 

simulations are defined by block diagrams describing the signal flow between the blocks, like Simulink [7]. Discrete-

event simulations (DES) constitute models of discrete processes and are based on discrete events instead of numerical 

methods [8]. Based on these approaches, almost every engineering domain has its own simulation tools. Some of the 

most well-known simulation domains are structural dynamics, commonly covered by FEA simulations (e.g. [9]), rigid 

body dynamics covered by simulation tools like MSC Adams [10], SimMechanics [12] or modern game engines [11]. 

Simulations in the field of robotics either are supplied directly by the manufactures themselves, or are based on systems 

like the ROS-based simulation system GAZEBO [13] or V-REP [14].  

 

Taking a closer look at currently used simulation platforms in space (e.g. BASILES [15], K2 [16], SimSat [17], EuroSim 

[18]) reveals that all simulators are based on the same principles. First of all a model has to be defined and developed. 

This includes the code generation for the model. Based on the model, the simulator itself is defined by selecting the 

required models and libraries. Based on this, the simulator is compiled, i.e. an executable program is generated. Finally, 

the simulator is ready to use, and simulations can be executed. As a consequence, for each variant or scenario to be 

investigated a specific simulator has to be compiled. Typically, these simulation platforms apply certain simulation 

standards, e.g. to achieve model compatibility between simulation platforms or different applications. The most relevant 

standard for space systems is SMP2 (Simulation Model Portability v1.2) [19]. The FMI standard (Functional Mock-up 

Interface) [20] is an additional important step towards simulation platform interoperability. Especially, when it comes to 

combining different subsystems with limited numbers of defined inputs and outputs the FMI standard is quite promising. 

 

In summary, a lot of domain specific tools and interfaces are available to solve various problems. Nevertheless, simulating 

complex systems like modular satellites in their entirety is still a big challenge using the available simulation platforms. 

Here, simulation models are grouped according to the simulation domains and are statically coupled to a simulator, see 

Fig. 7 left. This is a time-consuming process, highly suited to classical monolithic satellite systems. The result is a lack 

of flexibility in the configuration process of the system to be simulated. In order to investigate a variety of modular 

satellite layouts efficiently, a new approach is indispensable.  

 



THE EXPERIMENTABLE DIGITAL TWIN CONCEPT 

 

The EDT methodology aims for closing this gap. Based on the term „Asset” this section gives a definition of the term 

“Experimentable Digital Twin” as a concretization of the generic “Digital Twin” concept. Operational scenarios are 

specified by networks of interacting EDTs in so-called “EDT Scenarios”.  

 

Assets of Modular Spacecraft 

 

An asset is an “entity that has a perceived or actual value for an organization and is owned or individually managed by 

the organization” [21]. Material and immaterial assets are distinguished. Material assets such as products and production 

facilities (or parts of them) as well as human workers are part of the physical world. Immaterial assets such as data, data 

models and simulation models are part of the virtual world. Concrete examples of assets with respect to modular iBOSS-

based spacecraft are therefore iBLOCKs, iSSIs and iSATs as well as components integrated into or attached to iBLOCKs 

like antennas or solar panels (see Fig. 2). From the point of view of the DT, the asset can also be stated as “Real Twin”. 

 

 
Fig. 2. Some assets with respect to the iBOSS concept (f.l.t.r.): iBLOCK, iSSI, iSAT, solar panel, antenna 

 

From Digital Twins to Experimentable Digital Twins 

 

Colloquially formulated a DT is the virtual counterpart to a real asset. However, the meaning of the word combination 

“digital twin” is not clearly defined. Generally, a twin is the same thing twice, at least with regard to the characteristics 

considered in the respective situation. The same applies to the DT, too. An entity is considered twice, namely an asset 

once in the real world and once in the virtual world. The DT denotes the digital half of the twins (or of this pair) and thus 

provides a vivid term for the virtual artefacts that are created during the digitization of real assets. 

 

The use of the DT term in relation to technical systems goes back to Grieves, who mentions this term in 2003 in the 

context of “Product Lifecycle Management” [22]. In 2010, NASA revisits the concept for aerospace and hereby refers to 

an “ultra-realistic simulation” [23]. Subsequently, the term was investigated from many perspectives, e.g. from the 

perspective of simulation, CPS or smart production. In 2018, Gartner classifies the DT as part of the digitized ecosystem 

being one of the five major technological trends of the next decade and predicts the technology to reach the “productivity 

plateau” in 5-10 years [24]. The lack of a unique definition of this term becomes evident when looking at [21], which 

calls the concept of DT on the one hand “virtual digital representation of physical assets” and on the other side “simulation 

model” (see right side of Fig. 3). In the following, we will use the first DT definition also referred to as Asset 

Administration Shell in the Industry 4.0 context or simplified as Data Processing System (DPS) (see Fig. 4). 

 

 
Fig. 3. The Definition of the Digital Twin (excerpt of Fig. 1) 

 

Five components are currently considered as the “superset” of a DT. Originally, the term DT was solely used to refer to 

the Digital Model (geometry, structure, ...) of a physical asset that (often through simulation) allows the prediction of 

its behaviour. Within a short time, additional tasks were assigned to the DT. It stores the operating data generated 

during the operation of physical assets (sometimes called “Digital Shadow”) and describes the functions and services 

and communication capabilities (interfaces to others, ...) provided by the asset. Most current realizations of DT arise 

from the Industry 4.0 context and focus on one of those components like using the DT as node in the Internet of Things 

or as a simulation model (see above). Compared to this, an Experimentable Digital Twin considers the CPS in its 

entirety, including its internal structure, all physical interactions as well as internal and external communication interfaces 



(see also Fig. 3). An EDT joins all the individual components of a DT mentioned above. In combination with the definition 

of the experimental model [25], this leads to the following definition of the EDT: An Experimentable Digital Twin (EDT) 

is a virtual digital 1-to-1 replica of a CPS including its structures, models and data, interfaces and communication 

capabilities as well as its dynamic processes in an experimentable model. 

 

Interaction of Assets and Experimentable Digital Twins 

 

Looking at the interaction between assets and DT with each other and with their environment, three interaction types can 

be distinguished (see Fig. 3). Physical assets interact with each other on the physical level. An example for this is the 

interaction between a robot and the object to be handled. This interaction leads to energy and material flow according to 

different disciplines such as mechanical and electrical engineering, hydraulics or thermodynamics. As part of internal 

communication, the DT exchanges data and commands with its asset via individual, device or software-specific 

interfaces. In the field of external communication, DT communicate with each other via suitable communication 

protocols. The interactions of EDTs (consisting of both, asset and DT) on these thee levels are described in an abstract 

form by interaction points, so-called ports, which in their entirety form the interface of an EDT. Concrete applications 

are modeled by connecting EDTs. The result are networks of interacting EDTs, so called EDT Scenarios (see Fig. 4). 

 

Basic Structure of Experimentable Digital Twins and EDT Scenarios 

 

A systematic view on EDTs is given in Fig. 4 (left): An EDT combines EDT Components, i.e. a simulated data processing 

system (DPS, also referred to as DT, see Fig. 3) with a simulated asset consisting of sensors, actuators and the internal 

process itself (the simulated human-machine interface [26] is left out here). The current state of the EDT is represented 

by its state vector 𝑠𝑒𝑑𝑡(𝑡) = [𝑠𝑎𝑠𝑠𝑒𝑡(𝑡), 𝑠𝑑𝑝𝑠(𝑡)]. The DPS usually processes sensor data and/or commands the asset, e.g. 

mapping or motion planning algorithms. It may hold its own EDT Scenario to e.g. manage generated maps or environment 

models for motion planning. Each EDT (and in turn each EDT Component) has ports, i.e. inputs 𝑢𝑒𝑑𝑡(𝑡) and outputs 

𝑦𝑒𝑑𝑡(𝑡) to interact on the three different levels (physical, internal/external communication) with the EDT/EDT 

Components in their environment. All EDT Components as well as the EDT itself communicate using a simulated 

communication infrastructure 𝑢(𝑡) = 𝐾𝑒𝑑𝑡(𝑦(𝑡), 𝑡), which resembles the real communication infrastructure of its real 

world counterpart. 

 

The EDT state and the output depend on the EDT input and is calculated by appropriate simulation and data processing 

algorithms Γ𝑖, Φ𝑖  (𝑖 represents a simulation algorithm). The simulation 𝑠𝑒𝑑𝑡(𝑡) = Γ(𝑠𝑒𝑑𝑡,0, 𝑢𝑒𝑑𝑡(𝑡), 𝑡) starts with an initial 

state 𝑠𝑒𝑑𝑡,0 ≔ 𝑠𝑒𝑑𝑡(0), the output is calculated via 𝑦𝑒𝑑𝑡(𝑡) = Φ(𝑠𝑒𝑑𝑡(𝑡), 𝑢𝑒𝑑𝑡(𝑡), 𝑡) and combines the simulation state 

𝑠𝑒𝑑𝑡(𝑡) of all components of the EDT as well as its input 𝑢𝑒𝑑𝑡(𝑡). Γ and Φ combine the individual Γ𝑖 and Φ𝑖 , and contain 

all algorithms necessary to carry out the coupled simulation. These algorithms are provided by the EDT Components (e.g. 

the DPS) or by the simulator itself. In the latter case, they rely on and combine the models provided by the EDT 

Components (e.g. rigid body dynamics or sensor simulation). 

 

The right side of Fig. 4 illustrates a simplified EDT Scenario made up by interconnecting EDTs. Each EDT of the 

modular satellite represents one iBLOCK or the payload antenna, each EDT of the servicer satellite represents one satellite 

component, the EDTs of the space environment represent the sun and the earth. The network of connected EDTs 

hierarchically form the EDT of the iSAT, the servicer satellite, and the space environment respectively. Only “man-made” 

explicit interactions like mechanical, electrical, thermodynamic and data connections have to be modelled explicitly, 

which keeps the EDT Scenario understandable and manageable [3]. “Natural” implicit interactions like the sun 

illuminating the satellite or the physical interaction between manipulator and modular satellite can be omitted. It is the 

task of the simulation algorithms to detect and process those interactions automatically [3]. 

 

 
Fig. 4. Simplified basic structure of an EDT, example EDT Scenario 



Different Perspectives on the same EDT and EDT Scenarios 

 

In all development steps, EDTs, EDT Scenarios and their execution in VTBs (see next chapter) are always considered 

from all relevant perspectives, which may be an engineering discipline or a simulation domain. This way, all users – 

from development engineers over project managers to customers and end-users – are able to obtain the necessary overall 

view of the entire system under consideration of the development results of all the perspectives involved. This is the only 

way to answer questions such as “How does the energy consumption of the servicer satellite change when moving the 

robot based on the RvD sensor data taking into account orbital mechanics and solar energy production?”. Today, specific 

simulation models are modelled manually for each perspective and analyzed independently from each other. Using 

interconnected networks of EDTs in specific EDT Scenarios in turn leads to experimentable and coupled models. Fig. 5 

shows examples of individual perspectives that are united by the EDT Scenarios. 

 

 
Fig. 5. Relevant perspectives on EDTs and EDT Scenarios when developing modular satellites 

 

VIRTUAL TESTBEDS: RUN-TIME ENVIRONMENTS FOR EXPERIMENTABLE DIGITAL TWINS 

 

It’s the task of so called Virtual Testbeds (VTBs) to bring EDTs to life by carrying out the simulation and data processing 

algorithms involved – and interfacing real hardware in hybrid (partly virtual, partly real) scenarios.  

 

Basic Structure of Virtual Testbeds and the Simulation Database 

 

On its left side, Fig. 6 illustrates the basic structure of VTBs consisting of a VTB Kernel, a Micro-Kernel providing real-

time data management and VTB internal communication means (used for communication inside the Kernel, between 

Kernel and Services, and inside/between Services). The Virtual Testbed Active Simulation Database (VSD) provides data 

management services, which manage EDT Scenarios consisting of EDTs and EDT Components as well as their 

interactions (see EDT namespace on the right side of Fig. 6). In addition to that, the VSD holds all the necessary simulation 

models and data processing algorithms serving as the basis for various simulation algorithms (e.g. kinematics, rigid body 

and orbit dynamics, thermodynamics or sensors). Simulation algorithm specific models are derived via functional 

mappings between generic representations (models, ports, interactions) and the individual simulation models/algorithms. 

For the management of those models, the VSD can be extended by appropriate data models (the VSD is able to store any 

data structure that can be modeled by UML class diagrams, because it is based on the same meta model). 

 

The VTB Kernel is the basis for the implementation/integration of various simulation and data processing algorithms as 

well as communication and model exchange interfaces, all of them provided as Micro-Services, called VTB Services. By 

selecting the necessary VTB Services, different VTB configurations can be set up (e.g. for high-precision simulation, for 

real-time simulation or for real-time control of physical assets), which can be combined with different VTB Run-time-

Environments providing interfaces to different hardware setups (e.g. on desktop computers, as cloud services, for multi-

screen visualization or on mobile devices).  

 

 
Fig. 6: Simplified structure of VTB (left), simplified data model of the VSD (right) 

 

VTB Kernel, VTB Services and VTB Run-time Environments are fully independent from the EDT Scenario to be 

simulated. Compared to classical approaches, the EDT methodology sets up networks of interacting EDTs replicating 

real-world scenarios, and simulates these scenarios in a VTB automatically organizing all the “sub-simulators” necessary 

for this. The key of this new methodology is a systematic decoupling of EDTs and simulation algorithms, see Fig. 7, right. 



 
Fig. 7. Comparison of state-of-the-art simulation platforms and the EDT methodology 

 

Simulation and Data Processing Algorithms 

 

The basis for the execution (resp. simulation) of EDT Scenarios is a time-discrete scheduler which is able to carried out 

coupled simulations of continuous (1, index “c”) and time-discrete (2, index “d”) simulation algorithms: 

 

�̇�𝑐(𝑡) = 𝑓𝑐(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) 

0 = ℎ𝑐(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) 

𝑦(𝑡) = 𝑔(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) 

𝑡𝑅,𝑛𝑒𝑥𝑡(𝑡) = 𝑇(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) 

(1) 

𝑠𝑑(𝑡∗) = 𝑓𝑑(𝑠𝑑(𝑡), 𝑢(𝑡), 𝑡) 

 

𝑦(𝑡) = 𝑔(𝑠𝑑(𝑡), 𝑢(𝑡), 𝑡) 

𝑡𝑅,𝑛𝑒𝑥𝑡(𝑡) = 𝑇(𝑠𝑑(𝑡), 𝑢(𝑡), 𝑡) 

(2) 

 

𝑡∗ denotes the next event time in super-dense time representation [27]. The integration of simulation and data processing 

algorithms is inspired by the FMI standard [20]. VTB Services offer so called simulation entities (see Fig. 8) which 

provide the transition functions 𝑓𝑐 and 𝑓𝑑, secondary conditions ℎ𝑐  and output functions 𝑔 as well as 𝑇 to calculate the 

time of the next event or the following time step. Those simulation entities can be generic in the form that they model 

some generic theory (like kinematics, rigid body dynamics, sensor dynamics) or EDT Component specific in the form 

that they model some component specific data processing (like sensor data processing, robot control) or simulation (some 

component specific behaviour) algorithm. For each simulation algorithm Γ𝑖, Φ𝑖 a set of functions 𝑓𝑐,𝑖, 𝑓𝑑,𝑖 , ℎ𝑐,𝑖, 𝑔𝑖  and 𝑇𝑖  

has to be provided by the corresponding VSD Service. The VSD Service itself combines model information M and the 

actual implementation of the simulation algorithm. In the following, the mapping of simulation algorithms to 

corresponding simulation entities is illustrated. 

 

 
Fig. 8. Basic structure of a simulation entity 

 

Rigid Body Dynamics: Assuming a maximal coordinate approach towards rigid body dynamics simulation [28], the state 

of rigid body dynamics system 𝑠𝑅𝐵𝐷  is given by the positions, orientations and velocities of all rigid bodies. The transition 

function 𝑓𝑅𝐵𝐷 of rigid body dynamics simulations is based on the principle of momentum conservation. The input function 

𝑢𝑅𝐵𝐷(𝑡) is given by actuator forces/torques 𝑓𝑎𝑐𝑡 and disturbance forces/torques 𝑓𝑑𝑖𝑠: 

 𝑓𝑐,𝑅𝐵𝐷(𝑠𝑐,𝑅𝐵𝐷(𝑡), 𝑢𝑅𝐵𝐷(𝑡), 𝑡) =  (𝑀−1 ⋅ [𝑓𝑒𝑥𝑡 +  𝑓𝑎𝑐𝑡 + 𝑓𝑑𝑖𝑠  +  𝐽𝑇 ⋅ 𝜆]

𝑣
) (3) 

The secondary conditions ℎ𝑐,𝑅𝐵𝐷 are given by constraints between rigid bodies, enforced by the constraint forces 𝜆. The 

constraint forces are calculated according to the 𝐽𝑀−1𝐽𝑇-approach [28]: 

 ℎ𝑐,𝑅𝐵𝐷(𝑠𝑐,𝑅𝐵𝐷(𝑡), 𝑢𝑅𝐵𝐷(𝑡), 𝑡) =  𝐽 ⋅ 𝑀−1𝐽𝑇 ⋅ 𝜆 +  𝐽 ⋅ 𝑀−1 ⋅ (𝑓𝑒𝑥𝑡 +  𝑓𝑎𝑐𝑡 + 𝑓𝑑𝑖𝑠) +  𝑐 =  0 (4) 

This mathematical structure forms the base for the execution of arbitrary EDTs of a modular satellite seen from the 

perspective of rigid body dynamics. It is important to notice, that the EDT of a modular satellite system is composed from 

the EDTs of each of the components or sub-systems. The interconnections between the sub-systems are based on the 

standardized iSSI. Fig. 9 shows the basic structure of an EDT of a modular satellite. 



 
Fig. 9. EDT of a modular satellite, seen from the perspective of rigid body dynamics 

 

Orbit Dynamics: In order to incorporate orbital mechanics and orbital perturbations to the satellite dynamics, additional 

simulation entities are used to describe and calculate orbital forces and disturbances like gravitation, atmospheric drag, 

gravity gradient or solar pressure [29]. Based on the current state of the each EDT (i.e. positions and velocities as input 

for the simulation entities), the simulation entities calculate the external forces or disturbance forces (i.e. forces and 

torques as output of the simulation entities), that are used as input for the rigid body dynamics simulation. Other simulation 

entities provide complete simulation algorithms/models for the magnetic field of the earth. The output of these simulation 

entities is used to provide EDTs for subsystems like magnetic torquers or magnetic field sensors. 

 

Thermodynamics: The thermal perspective of the EDT Scenario is realized via FMU-based simulation entities. The 

FMUs are connected according to the physical rate of heat flow. On EDT level, a thermal connector linking two thermal 

ports models this heat flow. This results in a thermal network of iBLOCKs. The inputs and outputs of the simulation 

entities are the temperatures and heat flow rates. A simplified version of the simulation entity for the thermal simulation, 

can be described by the partial differential equation 𝑓𝑐,𝑡ℎ𝑒𝑟𝑚𝑎𝑙 . 

 𝑓𝑐,𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑠𝑐,𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡), 𝑢𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡), 𝑡) =
𝜕𝑄

𝜕𝑡
=  −𝑘 ⋅ 𝐴 ⋅

𝜕𝑇

𝜕𝑥
 (5) 

Additional simulation entities determine the direct, albedo and infrared radiation to the satellite surface accompany the 

FMU simulation entities and thereby enable to execute the thermal perspective of the satellite. Once again, the EDTs of 

each individual satellite component aggregate the surface of the satellite. This way, effects like self-shadowing are 

inherently reflected. As the simulation of radiance does not require dynamic inputs, it just evaluates the output function 

𝑔𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒  by determining the lit surfaces 𝐴𝑠𝑜𝑙𝑎𝑟 , 𝐴𝑎𝑙𝑏𝑒𝑑𝑜 , 𝐴𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑  (which are dependent on the state 𝑠𝑐(𝑡) of the EDTs). 

 𝑔𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) = 𝑆 ⋅ 𝐴𝑠𝑜𝑙𝑎𝑟 (𝑠𝑐(𝑡)) + 𝐴 ⋅ 𝐴𝑎𝑙𝑏𝑒𝑑𝑜 (𝑠𝑐(𝑡)) + 𝐼 ⋅ 𝐴𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 (𝑠𝑐(𝑡)) (6) 

 
Fig. 10. Schematic representation of the thermal perspective of an EDT of two modular building blocks 

 

Optical Sensors: The simulation of optical sensors like cameras or laser scanners is provided by another important set of 

simulation entities. Input to these types of simulation algorithms is a subset of the complete state of all EDTs (i.e. poses 

and material properties of all assets), as well as the pose of the sensor. Based on this state, the sensor simulation entities 

evaluate all surrounding EDTs and combine them with the EDT of the sensor itself. Exemplarily, the EDT of a camera 

covers information and simulation models for the optics, discretization process and resolution and generates a simulated 

picture (see Fig. 11), whereas the EDT of a laser scanner is described e.g. by scan patterns, opening angles and frequencies 

[32]. Assuming no sensor dynamics, the sensor simulation entity can be interpreted as a static evaluation of the state of 

all EDTs 𝑠𝑐(𝑡) (in more detail, the poses and geometries of all assets are evaluated). Therefore, only the output function 

𝑔𝑐𝑎𝑚𝑒𝑟𝑎(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) needs to be evaluated. The output function transforms all information from the state 𝑠𝑐(𝑡), to the 

sensor frame, e.g. by means of extrinsic and intrinsic camera parameters 

 𝑔𝑐𝑎𝑚𝑒𝑟𝑎(𝑠𝑐(𝑡), 𝑢(𝑡), 𝑡) = 𝑔𝑐𝑎𝑚𝑒𝑟𝑎 (𝑠𝑐(𝑡)) = 𝑇𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 ⋅ 𝑇𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 ⋅ 𝑠𝑐(𝑡) (7) 



 
Fig. 11. Functionality of the simulation entity for optical sensors 

 

Data Processing Algorithms: The modularity of the electronics and the operational software is a key concept in the 

iBOSS concept. EDTs of the operational software executed on each On-board Computer (OBC) accurately describe the 

distributed computation infrastructure. The network of EDTs intrinsically models the real network topology of the iSAT. 

Thereby, it is possible to investigate routing protocols or network failures effortlessly. To offer a platform independent 

and flexible execution of the operational software, each OBC is represented by a Docker container [30], which is part of 

the EDT model. Thereby, a strict logical separation between the software running on each OBC is achieved and additional 

functionalities like processor and memory load analysis provided by the Docker framework can be used. 

 

The Model Analysis Process to Generate the Executable Model 

 

The EDT Scenario (see e.g. Fig. 4, right) describes the explicit interactions of the EDTs. The EDTs themselves hold all 

models necessary to simulate the EDT Scenario incorporating selected perspectives (see Fig. 5). The remaining task is to 

find a transition between the formal specification of the EDT Scenario (see e.g. Fig. 4, right) and a formal specification 

of an executable model. Fig. 12 illustrates the overall workflow. The important steps here are to assign EDT Components 

to simulation entities according to the selected perspectives, to merge strongly coupled simulation entities into simulation 

tasks and to timely order the tasks. The result is a scheduling plan to be executed by the scheduler. 

 

 
Fig. 12. The process from an EDT Scenario to an executable model consisting of simulation tasks 

 

Fig. 13 visualizes this process for the EDT Scenario above. The tables on the left can be derived from the EDT Scenario 

fully automatically. Part 1 shows the various components of all EDTs with their explicitly modeled interactions (for more 

complex systems, the matrix can be significantly larger). Each block on the table represents an EDT Component, i.e. asset 

(yellow) or DPS (blue). Columns represent perspectives (here simulation algorithms and DPS programs), while rows are 

EDTs. This example comprises six perspectives, rigid body dynamics, sensor, thermal, radiance, signal-oriented 

simulation (used to model the DPS of the servicer) and Docker containers (providing implementations of the iSAT DPSs).  

 

When loading the EDT Scenario, the VTB assigns all EDT Components to their perspectives represented by simulation 

entities provided by VTB Services. The network of EDT Components shown in table (1) is converted into a network of 

simulation entities as shown in table (2). Possible results are simulation entities bringing together multiple EDT 

Components or simulation entities responsible for exactly one EDT Component (right table). Here, the simulation entity 

responsible for rigid body dynamics (the same holds for sensor and radiance simulation) brings together all EDT 

Components with rigid bodies so that they can interact with each other. At the same time, each simulation entity specifies, 

which parts of the VSD model act as inputs, outputs and states (to guarantee a consistent and performant data transfer 

between the different simulation algorithms, the simulation results are routed via the VSD). This way, the VTB detects, 

that rigid body dynamics, sensor and radiance simulation work on the same geometric model; hence the simulated sensor 

and radiance data has to reflect the movement of the EDTs. This introduces new interdependencies shown as green arrows. 

In addition to this, simulation entities are identified, which have to be grouped into one simulation task. Here, all FMUs 

simulating the thermal behavior have to be solved by one integrator, all Docker containers are managed by one Docker 

Daemon (both illustrated by dotted gray lines). 

 

After grouping the EDT Components, the resulting network of continuous simulation tasks is analyzed by the VTB 

Scheduler, leading to the scheduling plan on the right (this simplified example assumes, that all simulation tasks use the 

same time step). In this step the edges of the network of EDT Components shown in table (2) representing information 

flow are converted into edges representing the execution order. When analyzing the resulting graph, two cyclic 

dependencies are detected that have to be resolved by the user. In this case, two edges (the dotted blue ones) are removed. 

The consequence is, that the AOCS and manipulator sensor data are processed by the AOCS and manipulator DPS with 

a delay of one time step.  



 
Fig. 13. The model analysis process for the EDT Scenario depicted in Fig. 4 

 

Coupled Simulation of the EDT Scenario 

 

The result of the model analysis process is the scheduling plan consisting of timely ordered simulations tasks. Each 

simulation tasks consists of one or more simulation entities. They represent simulation or data processing algorithms and 

are implemented directly inside VTB Services or are provided by external simulators attached to the VTB. The coupled 

simulation on the level of simulation tasks realizes a “loose coupling” of those tasks, i.e. all tasks bring their own 

integrator. The coupling takes place by the propagation of outputs and the successive use of the same state variables by 

different tasks (e.g. kinematics, rigid body dynamics, sensor simulation, …). The coupled simulation on the level of 

simulation entities allows for a strong coupling of different simulation algorithms sharing only one common integrator 

(e.g. integration of rigid body and bulk solid simulation). 

 

USING EXPERIMENTABLE DIGITAL TWINS TO DEVELOP MODULAR SPACECRAFT 

 

The EDT concept and its realization by VTB is the basis for a streamlined workflow to develop modular iBOSS-based 

spacecraft. This workflow integrates the classical Model-based Systems Engineering (MBSE) process with state-of-the-

art simulation approaches into a novel Simulation-based Systems Engineering process based on concepts from Model-

driven Engineering (MDE) and Industry 4.0. Fig. 14 illustrates the overall development process. The starting point of the 

process is a detailed specification of an iBOSS-based satellite systems in SysML providing a formal specification of the 

idea including customer requirements and possible realizations (components, structure, interfaces, …) [31]. In a second 

step, these components are specified via EDTs including detailed models for the perspectives considered in the 

development as shown in Fig. 5. New EDTs are modeled based on their specification as a template and are detailed by 

model parts originating from different simulation domains. Components of particular interest, such as the sides of the 

individual iBLOCKs, are detailed in FEM models for structural analysis. Thermal models of the modules and interfaces 

describe the thermal behavior of the assets. Models particularly derived from CAD models for rigid bodies, sensors and 

actuators as well as the radiation input are integrated. The integration of the real control software, a complete robot control 

and the mission sequence control in the EDTs, enable the simulation of entire missions. Through the connection of the 

EDT ports their physical interactions in the form of suitable passive or active connections as well as their internal and 

external communication are modeled. All EDTs can be realized completely independent. Only this networking brings 

them together and is the starting point for the transformation of the EDT Scenario into an executable model. 

 

 
Fig. 14. The EDT-based development process applied to modular spacecraft 

 



The simulations of different operating scenarios are used by various EDT-based methods. The simulation of EDT Scena-

rios allow for in-depth analysis and test of various operating scenarios. The iSAT configuration and component parame-

ters can be optimized by investigating thousands of iSAT setups and configurations in massive-parallel simulations. Pure 

virtual functional validation of the entire iSAT can be used to check if the chosen setup meets the customer requirements. 

The logging of the overall system behavior might be used to generate data sets for the training of AI algorithms. For 

virtual commissioning, EDTs can be replaced by their Real Twins. In the future, Predictive Maintenance applications 

might compare state variables of the EDT and the Real Twin of the iSAT to detect system anomalies. To command the 

real iSAT, its EDT can act as a mediator between ground personnel and satellite [1]. All this is only possible because 

the EDT of the iSAT is a 1-to-1 replica of the real iSAT from a structural as well as behavioral point-of-view. 

 

APPLICATIONS 
 

The presented applications are based on an iBOSS-based satellite, the so-called iSAT-1 [5]. Within each of the following 

sections certain perspectives upon the iSAT-1 are examined in detail. It has to be stressed, that all these applications are 

based on the same EDTs. No additional configuration of the simulation models or the simulation platform has to be carried 

out. As the EDTs comprise all the models necessary for all those perspectives, they foster a holistic view on the iSATs 

with all their facets. It is possible to analyse all perspectives on the EDT Scenario at once, but simulation entities or 

perspectives can be left out e.g. for performance reasons. This does not affect the EDTs their selves, no extra compilation 

of simulation models or of the simulation platform is required to execute EDTs with different simulation entities. The 

result of the application of the EDT methodology for iBOSS is the Virtual Testbed iBOSS (VTi). The VTi provides the 

simulation algorithms and software interfaces to execute arbitrary networks of EDTs under the perspectives of Fig. 5. 

 

Analysis of Detumbling Manoeuvre: To analyse orbital manoeuvres like detumbling, at least the following perspectives 

need to be considered: rigid body dynamics, orbital dynamics and perturbations, attitude determination sensors, actuator 

dynamics, and the distributed operational software executing the control algorithms. The EDTs of the satellite’s hard- and 

software components and the EDT of the space environment provide all these perspectives. As already indicated in Fig. 

9, the iSAT-1 has four reaction wheels in tetrahedron configuration and two thruster clusters attached to the rear 

compartment. Additionally, three magnetic torquers in the rear compartment can be used for the attitude control. The 

detumbling control is based on [33]. The execution of this EDT Scenario offers a deep insight into various aspects of the 

satellite system (e.g. the actuator torques within the reaction wheels or the control currents within the magnetic torquers, 

see Fig. 15). Furthermore, the processor and memory loads of each OBC can be examined. 

 

 
Fig. 15. Analysis of detumbling manoeuvre from the actuator and operational software perspective 

 

Dynamic Interface Loads: Originating from the previous EDT Scenario, dynamic interface loads between the modular 

building blocks are another crucial point in the layout of modular satellite systems. It has to be ensured that the maximal 

loads are never exceeded, even that they are never in a critical region close to the limit. Therefore, an EDT Scenario was 

configured, where all actuators of the iSAT-1 provide full power for a predefined period. This way, the theoretical 

maximal mechanical loads on the interfaces can be determined. As expected, the mechanical loads far off-centre of the 

satellite are the most critical ones due to the centrifugal forces. Nevertheless, these forces never exceed a minor fraction 

of the maximal capable mechanical loads of the interfaces, therefore a safe operation of the satellite is guaranteed. 

 

 
Fig. 16. Analysis of dynamic interface loads with help of the rigid body dynamics perspective 

 



Thermal Layout of the Satellite: Thermal design of a modular satellite is a quite challenging task. All iBLOCKs are 

connected via a standardized thermal interface. Nevertheless, the internal thermal layout (thermal straps and heat-pipes) 

of each iBLOCK can be individually adapted to the mission requirements, leading to an almost infinite number of 

configuration possibilities. Combined with a configurable distribution of computation processes over the iSAT, the 

thermal heat within each iBLOCK might be highly time-dependent. Thus, the analysis of the EDT Scenario defined above 

can be extended by a thermal component. Therefore, each EDT of an iBLOCK contains a thermal model. This thermal 

simulation entity is integrated via FMUs for each iBLOCK. Based on this extended EDT Scenario, a time and iSAT 

configuration dependent analysis of e.g. the core temperature of each building block can be performed, see Fig. 17. 

 

              
Fig. 17. Thermal perspective on the iSAT-1 (based on works in [34]) 

 

Sensor Simulation for Rendezvous & Docking (RvD): When it comes to satellite servicing, a RvD manoeuvre between 

servicer and target has to be performed. Typically, these manoeuvres are based on and supported by optical sensors.  In 

order to validate such approaches, the aforementioned EDT Scenarios with the iSAT-1 can be extended by an EDT of a 

servicing satellite equipped with EDTs of various laser scanners. In this application example, the relative localisation 

between servicer and target is realised by an iterative closed point (ICP) algorithm for laser scanner point cloud matching. 

In the context of the decision support for sensor equipment design of the servicing satellite, different EDTs of laser 

scanners can be evaluated regarding their localisation accuracy during rendezvous and docking manoeuvres. 

 

 
  

Fig. 18. Sensor perspective on rendezvous and docking (based on works in [32]) 

 

Holistic Reconfiguration Scenario: All the previous presented perspectives have been combined into a single holistic 

reconfiguration scenario, covering all perspectives depicted in Fig. 5. A servicing satellite is equipped with an iBLOCK 

that should be replaced at the target satellite. Once the phasing manoeuvre is done, a RvD phase is attached. Finally, the 

actual reconfiguration process is performed, considering the robot kinematics, dynamics and all relevant sensors. 

Throughout the whole simulation, all states of all EDTs can be analysed, facilitating a deep insight into the physical 

properties of each component and the state of the operational software or control algorithms. Thereby, a functional 

verification of the interplay of all subsystems can be performed, providing a benefit for the development of modular 

satellite systems. 

 

 
Fig. 19. Comprehensive perspective on a reconfiguration scenario (based on works in [34]) 



CONCLUSION 

 

In this paper, we introduced the methodology of Experimentable Digital Twins and its use for the development of modular 

spacecraft. The EDT methodology provides the technical and organisational basis for a comprehensive and integrated 

Simulation-based Systems Engineering approach for the iBOSS concept including all methods, tools and processes 

needed. In this context, EDTs provide a structuring element and a semantic entity to bring together developers from 

various domains and other stakeholders – all of them organized in distributed and interdisciplinary teams. Therefore, 

EDTs integrate all the information available and necessary throughout the life-cycle (digital models, communication, 

services, operating data, behaviour). The Virtual Testbed iBOSS (VTi) provides the necessary infrastructure to specify 

iSATs, to model EDTs of iBLOCKs, to analyse iSATs in coupled simulations in various operating scenarios incorporating 

different perspectives at the same time and to apply various EDT-based methods like optimization, validation, 

commissioning and training. All these methods are accessible to different stakeholders – not only simulation experts – 

and can be used in different VTi setups/configurations on different platforms. 

 

As illustrated in Fig. 20, EDTs are the central structuring element and semantic entity in the iBOSS life-cycle. They are 

organized in a central EDT repository providing all building blocks necessary to configure new iSATs. In the future, all 

iBOSS-specific developments will benefit from the current EDT status and result in new or updated EDT. However, 

iBOSS is only one application field for EDTs. EDTs are used in various areas e.g. for industrial production plants, for 

autonomous cars, for construction, forestry machines as well as for cities or buildings.  

 

 
Fig. 20. EDTs as semantic entity and structuring element for development and operation of modular spacecraft 

 

What are the consequences for the development of components, systems, or systems of systems? The answer is threefold 

[26]: First, use EDTs for the development of future systems. Providing EDTs and using simulation should become as 

natural as developing the hardware and/or software itself (e.g. during the MBSE process, for development, 

characterization, verification, validation, and optimization). Second, bring simulation technology to the real system. 

EDTs as well as VTBs provide key technologies for the development of intelligent systems. They ease the development 

of complex algorithms and their transfer to the real system. Third, continue with the development of the overall 

approach. Today, we can provide a reference implementation, which serves as the basis for the Virtual Testbed iBOSS. 

Nevertheless, there is still a lot of work to do e.g. concerning the development of simulation algorithms (such as flexible 

or soft bodies), the integration of simulation standards like SMP2, for the integration and (weak/strong) coupling of 

different simulation algorithms, to integrate VTBs in development infrastructures, and so on. 
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