

The **hisaor** chip - a new system-on-chip that combines advanced neural network and digital signal processing with multiple interfaces, radiation tolerance, and low power consumption.

Barry Kavanagh, Michael Ryan

Main processor	4 core ARM A9
AI coprocessor	GPU*8+NN*8
Production process	FD-SOI 22nm
Floating point computing power	64GFLOPS
Fixed point computing power	12 TOPS
Main frequency	1GHZ
Temperature class	[-40 , 125℃]
Typical power consumption	6W
DDR type	64bit DDR3/DDR4
Video codec	H264/H265/JPE G2000
Encryption and decryption engine	SM4
Package size	25*25mm

Evaluation board & demo setup

Neural network image processing demo

- The neural network approach involves two main stages
- Training
 - Decide on a neural network configuration and set the weights so as to minimise total error across a large number of pre-classified images
 - Result is a NN model expressed in a standard way.
 - (Have done this with *hisaor*, but usually done off-line in cloud etc.)
- Using
 - Set up system to run the model
 - Feed in an object to be classified
 - Look at the classification probabilities

Yolo Model and Satellite Image

Yolo both detects and classifies. Any things there? Where are they? What are they?

(Ans.:Three ships) *hisaor* time < 5 ms

How the demonstrations were made

- On PC:
 - Use Acuity IDE to create version of Yolo for use on hisaor
 - Uses OpenVX
- Evaluation board
 - Connect terminal and camera to evaluation board
 - Power up evaluation board
 - Use terminal to identify OS location (SD card with Linux Ubuntu)
 - Log in to Linux over Internet
 - Download and start application
- Things worked as expected!!!

Back to the chip

- All our own work? NO!!
- Many IP cores from different vendors
 - Some with space heritage already
 - All from established vendors
 - All with appropriate support software
- Designing
 - What criteria must the IP cores meet?
 - What functionality would be good to have?
 - What corresponding cores meet the criteria?
 - How best to connect them?
 - On-chip vs off-chip memory

Some Design requirements

- Low power consumption and good radiation tolerance
- Fast image processing
 - Capturing the image
 - Processing the image
- Fast NN processing
 - Numerical throughput
 - Software compatibility
- General purpose processing
 - Good processing power
 - Able to run Linux
- Interfaces as many types as possible

NN processing system

- 8 x GPUs
- 8 x NN processors
- Shared high speed cache
- High speed connectivity
- At max 1 GHz clock
 - 64 GFlops
 - 12 TOPS

Central CPUs

- 4 x ARM Cortex-A9
- With FPU & SIMD
- 32 KiB Level 1 caches
- 512 KiB Level 2 cache
- High speed connectivity
- Coresight Debug access

Only connect...

With many IP cores and a need for the highest possible bandwidth the on-chip bus design was far from simple:

Main processor	4 core ARM A9
AI coprocessor	GPU*8+NN*8
Production process	FD-SOI 22nm
Floating point computing power	64GFLOPS
Fixed point computing power	12 TOPS
Main frequency	1GHZ
Temperature class	[-40 , 125℃]
Typical power consumption	6W
DDR type	64bit DDR3/DDR4
Video codec	H264/H265/JPE G2000
Encryption and decryption engine	SM4
Package size	25*25mm

Acknowledgements

The *hisaor* chip was made possible by a lot of people in a lot of organisations.

While it is impossible to mention them all, we must in particular thank

Zhuhai Orbita Aerospace Science & Technology Co. Ltd. whose staff made a major contribution to both the design and implementation of *hisaor*.

Our thanks are also due to VeriSilicon Microelectronics Co., Ltd., who provided some of the main IP cores used in *hisaor* and were helpful throughout the project, and to the KHRONOS group for their work in relation to AI software.

Questions?

Embedded software tools, Hi-rel components, & Satellite Subsystems