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ABSTRACT 

 

Modern earth observation missions collect imagery with ever more spatial and spectral detail, which 

causes the amount of data to increase very rapidly. Limitations in data downlink capacity have 

become a major bottleneck hindering the exploitation of the rich information in current and future 

satellite missions. In the CORSA project, an ESA PhiLab EO Science for Society project, we 

developped an AI method for lossy image compression which learns optimal data reduction tuned to 

the desired quality for the intended use. It generates a compact image representation containing deep 

feature vectors that are part of a codebook. The vectors can be represented by their codebook indices, 

which can be written to file as compact bit-arrays, suitable for downlinking. The full vectors are 

recreated afterwards from the indices using the same codebook, and the image can be reconstructed 

from the vectors using the decoder part of the model. The method is very suitable for satellite onboard 

data reduction, especially for smaller remote sensing missions capable of acquiring large volumes of 

multispectral and/or high spatial resolution image data, but limited in power and downlink budget. 

The compressed format can also be used to store image data efficiently in the ground segment. 

 

 

1. INTRODUCTION 

 

Modern earth observation missions capture ever more detailed information, with more spatial and 

spectral detail.  Consequently, the amount of data gathered is increasing very rapidly.  The use of  

smaller platforms like cubesats also limits data downlink capacity, hindering usability of the missions. 

Also for the ground segments, the increase in data amount poses new challenges regarding data 

storage capacity and fast image retrieval.  

Diverse solutions are being developed to tackle this problem. The idea of "edge computing” is to 

make computations close to the source to avoid  unnecessary large data transfers.  Applied to satellite 

imaging, performing onboard processing and data analysis offers a fundamental shift as the derived 

information to be downlinked is much more compact. The success of onboard processing solutions is 

limited by computational resources, including a strict power budget which is shared with imaging and 

downlink activities. Solely downlinking extracted information instead of the raw data also puts a limit 

on the potential uses cases. 

Onboard data reduction can be achieved by detecting and discarding clouded images (which are 

useless for most applications).  This functionality has very recently been showcased in the ɸ-Sat [1], 

or PhiSat, AI technology which will fly on one of the two CubeSats that make up the FSSCat mission. 

To avoid downlinking cloudy images back to Earth, the ɸ-Sat artificial intelligence chip will filter 

them out so that only usable data are returned.  The Φ-sat-2 mission will embark a SW platform able 



to run AI apps to fully decouple the App features from the underlying on-board hardware. opening 

up a more flexible path for on-board AI applications. 

Generic lossless compression techniques only offer modest gains, therefore “near-lossless” methods, 

which retain the full quality of raw images but not the exact bits, may be more beneficial for certain 

applications. Even greater data reduction gains can be obtained by taking into account the purpose of 

the images. Classical lossy image compression (e.g. JPG) are optimized for human viewing and 

minimize the visibility of compression artefacts. However, resulting images are less suitable to derive 

quantitative information afterwards. It can be much more advantageous to adapt the compression to 

minimize the loss in terms of the quality of the information that will be derived from the images. In 

this paper, we investigate the use of artificial neural networks for image compression with 

semantically meaningful compressed representations.  

Recently, neural networks, especially the convolution neural networks (CNN), have achieved 

significant success in many fields including computer vision [2]. A CNN model can be interpreted as 

feature extractors to transform the image and video into feature space with compact representation, 

which is beneficial for image and video compression. One important approach in using Neural 

Networks for image compression, is the use of auto-encoder architectures, consisting of an encoder 

mapping an image input through nonlinear transforms to a latent feature vector (typically with lower 

dimensionality than the original input image), and a decoder which inverts the latent feature back into 

an image reconstruction. Once the encoder outputs the latent feature, typically some form of 

binarization/quantization is performed in order to transform the latent feature into a set of discrete 

symbols. The quantization contributes to information loss, but by discretizing the feature space, we 

get a finite set of symbols that we can further compress into a bitstream using some lossless entropy 

coding function. The encoder and decoder can be constructed using convolutional neural networks, 

or using recurrent neural networks [3, 4].  

However, it is difficult to straightforwardly incorporate the CNN model into end-to-end image 

compression. Generally speaking, CNN training depends on the back-propagation and stochastic 

gradient descent algorithm which demand the almost-everywhere differentiability of the loss function 

with respect to the trainable parameters such as the convolution weights and biases. Due to the 

quantization module in image compression, it produces zero gradients almost everywhere which stops 

the parameters updating in the CNN. 

A variational autoencoder (VAE) is used in the work “Variational image compression with a scale 

hyperprior” [5]. The paper proposes an end-to-end trainable model for image compression based on 

variational autoencoders. Unlike existing autoencoder compression methods, their model trains a 

complex prior jointly with the underlying autoencoder. They demonstrate that this model leads to 

state-of-the-art image compression when measuring visual quality using the popular MS-SSIM index, 

and yields rate–distortion performance surpassing published ANN-based methods when evaluated 

using a more traditional metric based on squared error (PSNR).  

Vector-Quantized Variational Autoencoders (VQVAE) provide an unsupervised model for learning 

discrete representations by combining vector quantization and autoencoders [6]. As [5], VQ-VAE 

also trains a complex prior jointly with the underlying autoencoder. VQVAE-2 introduced a multi-

scale hierarchical organization of VQ-VAE for the purpose of generative AI, improving also the 

compression performance [7].  

Next to the self-supervised objective of image reconstruction, we also try to incorporate a self-

supervised objective that is targeted specifically at learning semantically meaningful laten 

representations.  We choose to use DINO or “self-distillation with no labels” [8].  With DINO no 



negative samples are needed as in self-supervised methods that use Contrastive predictive loss. Just 

like BYOL [9], DINO uses 2 networks, i.e. student and teacher networks, where the weights of the 

teacher network are not learned by backpropagation, but are an exponential moving average of the 

weights from the student network (so they lag behind the student’s weight parameters). DINO relies 

heavily on cropping and different data augmentation techniques to feed different versions of the same 

input image to the teacher and student networks 

We developed an autoencoder model for image compression using the quantization method as 

implemented in the VQVAE-2 architecture, and added the DINO approach in the training procedure. 

Our method is very suitable for satellite onboard data reduction, especially for smaller remote sensing 

mission which target specific application or application areas. The compressed format can also be 

used to store image data in the ground segment.  Not only does this optimizes the use of the available 

data storage, it also allows to perform many image analysis tasks directly on the compressed image 

vectors, which can be more efficient than on the original images.  

The compression quality is assessed using Structural Similarity Index (SSIM) and Peak Signal-to-

Noise Ratio (PSNR) on compressed Sentinel-2 images. The effectiveness of using the latent features 

as direct input to the downstream task of classification was evaluated using the BigEarthNet 

(http://bigearth.net) dataset [10]. The effect of the compression on the downstream task of semantic 

segmentation was evaluated on the task of detecting agricultural parcel boundaries using as input 

images reconstructed from the compressed representations using the decoder. 

 
 

2. COMPRESSION METHOD AND RESULTS 

 

2.1 Compression Network architecture 

The proposed method of this paper follows the concept of the hierarchical VQVAE-2 [7], with some 

changes in the model architecture to achieve higher reconstruction accuracies. The model is an 

autoencoder, consisting of an encoder and a decoder pathway. The encoder generates a compact 

image representation containing deep feature vectors that are part of a learned codebook. The vectors 

can be represented by their codebook indices, which can be written to file as compact bit-arrays, 

suitable for downlinking. The full vectors are recreated afterwards from the indices using the same 

codebook, and the image can be reconstructed from the vectors using the decoder part of the 

autoencoder model.  

Our encoder consists of  one or more convolutional blocks, each one downsampling its input’s width 

and height with a factor of two. Each convolutional block in our encoder produces a feature map 

consisting of a set of feature vectors that are further quantized based on their distance to the prototype 

vectors in the codebook, such that each vector is replaced by the index of the nearest prototype vector 

in the codebook. For each convolutional block in its encoder, our model produces a quantized feature 

map or ‘latent representation” with a high and width depending on the level in out convolutional 

hierarchy. For a three-level encoder, the model outputs three latent representations, i.e. “top latent”, 

“middle latent” and “bottom latent”.  

In the decoder part of the model, every quantized feature map is mapped back to their corresponding 

full vector using the learned codebook. The “top latent” and “middle latent” are first up-sampled to 

match the width and height of the “bottom latent”. From these vectors the decoder then reconstructs 

the original input image using transposed convolutions. To learn these mappings, the gradient of the 

reconstruction error is back-propagated through the decoder, and to the encoder using the straight-

through gradient estimator as described in [6]. 



 

Figure 1. Overview of The VQVAE-FPN model architecture 

 

In this work, several variations to the VQVAE-2 architecture were tested to achieve the best trade-

off between compression ratio and reconstruction accuracy for Sentinel-2 image patches from 

BigEarthNet, only taking into account the 10m bands (B02, B03, B04, B08) for every image. Image 

size is 120 by 120 pixels.   

The design choices for our experiments were 

- number of hierarchic levels in our VQVAE model: 1, 2 or 3 

- embedding dimension: dimension of the latent vectors in the codebook 

- number of embeddings: the number of possible vector values in the codebook to which the 

latent vectors will be mapped; a larger number of embeddings will increase the capacity of 

the information bottleneck, but will lead to a lower compression ratio as we will need more 

bits to store the index-number of each codebook vector.  

- Number of convolutional filters used  in each encoder block and in the residual blocks.  

The encoder in each block is the “top” encoder from the [7], performing only 1 downsampling 

operation. In contrast to the original VQVAE-2 paper, we do not perform a 4x downsampling of the 

input image in the first encoder block, but we limit this to 2x downsampling.  

Bottom level feature maps are conditioned on non-quantized higher feature maps, using upsampling 

for the higher feature maps instead of using a dedicated decoder. This conditioning is performed by 

a simple addition instead of a concatenation. A 3x3 convolution is applied to the conditioned feature 

maps on all levels to reduce the number of feature maps to the match the embedding dimension. The 

decoder takes as input the quantized latent feature maps from all hierarchical levels, upsampled to the 

resolution of the lowest latent feature map. We refer to this architecture as “VQVAE-FPN”, since the 

alterations are loosely based on some specific architectural design aspects from Feature Pyramid 

Networks. The resulting model is described in figure 1.  

 

 



2.2 Dataset 

The model for image compression was trained on images from the BigEarthNet dataset [10]. 

BigEarthNet is a benchmark archive, consisting of 590,326 pairs of Sentinel-1 and Sentinel-2 image 

patches. For our study, we only used the Sentinel-2 images. In the BigEarthNet dataset, each image 

was annotated by the multiple land-cover classes (i.e., multi-labels) that were provided from the 

CORINE Land Cover database of the year 2018 (CLC 2018).  

Representation of the 43 available labels over all images in the dataset is very unbalanced. Some 

labels only occur in as few as 300 images, while other labels are present in up to 22k images. For the 

compression testcases, a subset of 75k images was made, selected with a bias in favor of the rarer 

classes so that our dataset was more balanced over the classes.   

The Sentinel-2 images are encoded using a uint16 format, with most values being lower than 8000. 

Thus, pixel values are mostly situated in the lower part of the dynamical range. To be used as input 

for the neural network, pixel values were first normalized using scikit-learn power scaler, leading to 

a more normalized distribution of input values.  

The model is applied to Sentinel-2 10m bands (Red, Blue, Green, NIR), and performances are 

validated in terms of reconstruction quality and effect on downstream tasks of image classification 

and semantic segmentation.  

 
2.3 Reconstruction results 

Table 1 shows the reconstruction accuracies for this VQVAE-FPN with feature map depths of 128, 

256 and 512 for bottom (level 0), middle (level 1) and top level (level 2) feature maps respectively. 

The size of the codebook for each quantization level, i.e. the number of embeddings, is indicated in 

the table as “NE0”, “NE1” and “NE2” for each hierarchical level respectively. The number of bytes 

needed to store the codebook index numbers to file, are shown in columns “bytes bin0”, “bytes bin1” 

and “bytes bin2” for each level respectively. The number of bytes required may be calculated as 

indicated in Eq. 1 
 
 

number of bytes = 1/8*(w*h*log2(NE))                                                                                                     (1) 
 
 

with w, h and NE the width, height and “Number of Embeddings” respectively for the relevant feature 

map. In the case we would like to save the quantized feature map of level 0 using 8-bits per index, 

our codebook for the bottom level feature map will have a size of 28 = 256 possible vectors. The 

resulting size for the compressed features of the bottom feature map would be 1/8*(60*60*8) = 3600 

bytes.  The original uncompressed images are encoded using a uint16 format. A raw RGB-NIR image 

(4 channels) of size 120 by 120 pixels thus has a size of 115200 bytes (120*120*4*(16/8)).  As a 

baseline, jpeg compression on RGB (no NIR) images with a compression ratio of 22 led to an average 

SSIM score of 0.951.  

 

 

 

 

 



Table 1. Model description and reconstruction metrics for 6 different model versions 

 

For all test on downstream tasks, we used model “S2-128-256-512 Upsample” with NE=1024 

because a 3-level hierarchy produces a top latent feature map that may be used directly as input to a 

classifier model. Only for compression of the images consisting of the six 20m Sentinal-2 bands, a 2-

level hierarchy was used, “S2-128-256 Upsample”, also with NE=1024, to compensate for the smaller 

image input size of 60x60 pixels compared to 120x120 pixels for the 10m bands B02, B03, B04 and 

B08. 
 
 

3. DOWNSTREAM APPLICATIONS 

 

We investigate the effect of image compression on two downstream tasks: semantic segmentation 

using compressed-reconstructed images, and binary classification using the intermediate feature maps 

as direct input to a small multilayer perceptron that acts as the classifier.  

 

3.1 Semantic segmentation on reconstructed images 

 

Methodology 

We set up an experiment to test the impact of image quality loss caused by the compression-

reconstruction on the downstream task of image segmentation. For this testcase, data from the AI4EO 

challenge was used [11]. The goal of this challenge is to map cultivated land using Copernicus 

Sentinel imagery, and to develop solutions to extract as much information as possible from the native 

10-meter per pixel resolution. To test the effect of artefacts caused by the image compression on the 

quality of downstream tasks, this AI4EO challenge is very well suited since the aim of the challenge 

was to identify agricultural areas smaller or narrower than a Sentinel-2 pixel. More specifically, the 

goal was to estimate a cultivated land binary map at 2.5 meter spatial resolution given as input a 

Sentinel-2 time-series at 10 meter spatial resolution, therefore resulting in a 4x spatial resolution 

enhancement. The participants were requested to produce output datasets on one area of interest in 

Slovenia. The size of the input images was 500 by 500 pixels, or 5 by 5 km².   

To perform the segmentation, we used the trained model that was submitted to the challenge by the 

“AI@TAP” team. Their model is a Super-Resolution Conditional GAN inspired from the Pix2Pix 

Image-to-Image Translation with Conditional Adversarial Networks paper [12]. The model needs as 

input a timeseries of Sentinel-2 images, using 10 of the 12 bands available: B02, B03, B04, B05, B06, 

B07, B08, B8A, B11, and B12. In the original dataset, all bands were resampled to a ground resolution 

of 10m.  

The trained model for semantic segmentation was tested on the original input data, as well as on input 

data that was compressed and reconstructed using our VQVAE-FPN approach. The compression of 

the original AI4EO Challenge dataset was performed using 2 separate VQVAE-FPN models: one 

Model name NE0 NE1 NE2 PSNR SSIM MSE bytes 

bin0 

bytes 

bin1 

bytes 

bin2 

Compression 

ratio 

S2-128-256 Upsample 256 256 
 

69,11 0,943 0,011 3600 900 
 

25.60 

S2-128-256 Upsample 512 512 
 

69,82 0,951 0,010 4050 1013 
 

22.75 

S2-128-256 Upsample 1024 1024 
 

70,89 0,960 0,008 4500 1125 
 

20.48 

S2-128-256-512 Upsample 256 256 256 69,80 0,950 0,010 3600 900 225 24.38 

S2-128-256-512 Upsample 512 512 512 70,05 0,953 0,009 4050 1013 254 21.67 

S2-128-256-512 Upsample 1024 1024 1024 70,56 0,959 0,008 4500 1125 282 19.50 



model specifically trained on the BigEarthNet 10m Sentinel-2 bands (B02, B03, B04 and B08), and 

another model trained on the BigEarthNet 20m Sentinel-2 bands (B06, B07, B08A, B11, and B12). 

The compression model for the images with only the 20m bands uses an encoder with only 2 blocks 

instead of 3, since the input image size in the BigEarthNet training set for these bands is 60x60 pixels 

instead of 120x120 pixels as for the 10m bands.  

Since in the AI4EO dataset the native 20m bands were resampled to 10m, the images in our testset 

for the 20m bands were first resampled to their original 10m ground resolution before running the 

compression with the VQVAE-FPN model. After compression, the reconstructed output was again 

upsampled from 20m to 10m ground resolution so it could be used as a direct replacement for the 

data in the original AI4EO dataset.   
 

Results 

We compare the results of the segmentation by running the same segmentation model on three 

versions of the same input: 

1. Original AI4EO Challenge input data 

2. Compressed-reconstructed data using VQVAE-FPN-256 model for the 10m bands 

3. Compressed-reconstructed data using VQVAE-FPN-1024 model for the 10m bands 

Reconstruction accuracies for all three testcases are shown in table 2. From this table we see a minimal 

impact on accuracy, precision and recall when using the compressed-reconstructed data compared to 

using the original input data. We notice no significant difference between using data compressed with 

the VQVAE-FPN-256 (256 embedding vectors in the codebook) compared to data compressed with 

the VQVAE-FPN-1024 (1024 embedding vectors in the codebook).  
 

Input data Accuracy Precision Recall 

AI4EO original 0.942 0.898 0.898 

VQVAE-FPN-256 compressed-

reconstructed 

0.936 0.890 0.882 

VQVAE-FPN-1024 compressed-

reconstructed 

0.936 0.890 0.884 

Table 2. Results on semantic segmentation using three different sets of input data: original AI4EO 

data, compressed-reconstructed data using VQVAE-FPN with 256 and 1024 embedding vectors 

respectively.  

 

Figure 2. a) RGB subset of the original 10-bands input image. b) output of the semantic 

segmentation model applied to the original input image; c) output of the semantic segmentation 

model applied to the VQVAE-FPN compressed-reconstructed input image 



 

Figure 3. Detail of the segmentation results. a) ground truth map of cultivated land b) output of the 

semantic segmentation model applied to the original input image; c) output of the semantic 

segmentation model applied to the VQVAE-FPN compressed-reconstructed input image 

 

From the table 2 and figure 2, one may conclude that the compression-reconstruction of the input 

images using VQVAE-FPN does have a negative impact on the accuracy of the detected cultivated 

land in the super-resolved output maps although this impact is very small (0.006). The main impact 

is seen in the very fine details (output map is super-resolved to 2.5m ground resolution i.e. 1/16th of 

a Sentinel-2 pixel that has 10m ground resolution) such as fine borders in between two detected 

regions. Figure 3 shows a detail of the output map that clearly shows the differences in some of the 

finer structures.  

 

3.2 Classification using VQVAE-FPN intermediate features 

A convolutional classification model typically consists of a convolutional backbone that produces a 

set of features that are forwarded to a “classification top”, i.e. a one or more fully connected layers 

on top of the convolutional backbone that output the prediction for each class.  

A possible benefit of image compression with the VQVAE-FPN model, is that the features extracted 

by the encoder backbone may be used as direct input for a classification top. In contrast to a classical 

supervised classification pipeline, where encoder and classification top are trained end-to-end with 

backpropagation using a supervised objective, our workflow would allow to train only the 

classification top fully connected layers using the (quantized) VQVAE-FPN features as direct input.  

Methodology 

We investigate if the VQVAE-FPN encoder backbone can be used as an efficient feature extractor 

for classification of Sentinel-2 images from the BigEarthNet dataset. We add a fully connected 

classifier on top of the VQVAE-FPN encoders, taking as input either the non-quantized top latent 

feature map from the encoder backbone, or the quantized latent feature maps. The multilayer 

perceptron used as a classifier consists of a global average pooling operation, followed by 2 dense 

layers with 512 hidden neurons, ReLU activation and dropout applied after each layer, a ‘layer 

normalization’ layer, and finally an dense layer with one neuron with a sigmoid activation function. 

For training the Adam optimizer was used in combination with binary cross-entropy loss.  

The autoencoder model should be generic enough to allow not only high quality image reconstruction, 

but also to capture the features necessary for downstream applications. For this purpose, we add the 

self-supervised training of our encoder network using DINO as a pre-task, before the model is further 



finetuned for image compression using the image reconstructions as the self-supervised objective. 

We implemented DINO in Tensorflow, using 2 global crops and 6 smaller crops of each image as 

input to the student network, whereas the only the 2 global crops are input to the teacher network.  

It is expected that DINO self-supervised pretraining yields a encoder backbone that is able to produce 

semantically meaningful features, whereas this would not be the case when training with only the 

compression-reconstruction objective.  

For the binary classification testcases, special care was given to construct well balanced datasets using 

a subset of the BigEarthNet dataset. The size of each subset was defined by the minimum of images 

in each class that was part of the testcase. For every positive example in the binary classification 

dataset for a specific class, the exact same number of negative examples was selected. Datasets for 

binary classification were created for  

• Coniferous forest vs. broad-leaved forest 

• Sea vs no-sea  

• Urban fabric (continuous and discontinuous) vs non-urban areas 

• Presence of waterbodies vs no waterbodies.  

To check the effect of the DINO pretraining on the classification accuracy, and to check the effect of 

quantization of the feature maps on the classification accuracy, the following test methodology was 

applied: 

1. Optional: DINO pre-training 

a. Create the encoder-only model  

b. self-supervised training for the encoder model using DINO 

2. Construct full VQVAE-FPN model, optionally using pre-trained encoders from step 1 

3. Repeat 5 times: 

a. Test VQVAE-FPN on reconstruction accuracies 

b. Freeze the VQVAE-FPN backbone 

c. Test binary classification on the 4 datasets by training the fully connected classifier on 

top of the feature maps of the frozen encoder backbone  for 50 epochs with 100 steps 

per epoch 

d. Test binary classification on the 4 datasets by training the fully connected classifier on 

top of the quantized feature maps from the frozen VQVAE-FPN model for 50 epochs 

with 100 steps per epoch 

e. Unfreeze the VQVAE-FPN model and train for 5 epochs on the reconstruction task 

 

The methodology is thus applied two times: once using a VQVAE-FPN with randomly initialized 

encoders (no DINO pre-training in step 1), and once using a VQVAE-FPN with the DINO pre-

training of step 1.  

Effect of reconstruction training on the quality of the features for classification 

In this testcase, the encoder is not pre-trained using DINO. The VQVAE-FPN is trained for the 

reconstruction task, and every 5 epochs, the encoder part of the VQVAE-FPN is frozen so its 

intermediate feature maps can be tested as input to a classifier on the binary classification task. As 

explained in the test methodology, for the classification task the encoder is thus frozen and only the 

classification top is trained. Two versions of the encoder are used: one that outputs the raw feature 

maps (not quantized), and one version that outputs the quantized feature maps. In the classification 



task, classifiers were trained for 50 epochs and the accuracy reached at the end of the training is 

shown in the figures of Fig 4.   

 

  

  

Figure 4. Results on 4 binary classification tasks and reconstruction accuracy, using the 

intermediate features from the encoder backbone as input for the classifier, tested  at different times 

during the VQVAE-FPN training process on reconstruction (nr of epochs on the x-axis); results are 

shown both for quantized vs non-quantized intermediate feature maps as input to he classifier. 

 

For each binary classifier, we see in figure 4 a decrease in classification accuracy as the encoder is 

finetuned further for the reconstruction task (increasing SSIM scores). We also notice that 

classification on the non-quantized top feature map consistently produces higher accuracy than 

classification on the quantized top-level feature map. When running the same testcases, but with 

DINO pre-training of the encoders (figure not shown), the same decrease in classification accuracy 

is noticed.  

 

Effect of DINO pre-training on the semantic quality of the quantized feature maps 

Figure 5 shows the results of the same testcases, presented in such a way as to visualize the effect of 

DINO pre-training. It shows the results for a classifier using as input the quantized feature maps from 

the frozen encoder. The results of this experiment show no beneficial effect of DINO pre-training. 

Also in the case of classification using non-quantized feature maps, no beneficial effect of DINO pre-

training can be seen (figure not shown).  



  

  

Figure 5. Results on 4 binary classification tasks and reconstruction accuracy, using the quantized  

intermediate features from the encoder backbone as input for the classifier, tested  at different times 

during the VQVAE-FPN training process on reconstruction (nr of epochs on the x-axis), with DINO 

vs without DINO pre-training. 

 

From these results, we may conclude that the DINO pre-training task did not have the beneficial effect 

that we strived for. In future work, we will investigate if DINO pre-training with smaller image size 

as input might lead to better results. With smaller input images, the variability withing one image is 

further reduced, which may lead to a better training signal for the DINO training task. Also the image 

augmentations used in our custom Tensorflow implementation of DINO might be too conservative 

compared to the augmentations used in the original DINO implementation.  

 

End-to-end supervised classification baseline 

We notice that training a classifier on a frozen encoder backbone that was randomly initialized 

(standard Tensorflow “Glorot Uniform” initialization), already provides useable features for the 4 

different binary classification tasks. This can be seen by looking at the accuracies at “epoch 0” in the 

previous figures. At epoch 0 the encoder backbone was still randomly initialized as no training was 

performed at this stage. The training of the encoder on the reconstruction task led feature extractions 

that perform worse on the classification tasks.  

As a baseline, we also ran a purely end-to-end supervised classification training using the encoder 

(no DINO pre-training) and the classifier model on top. In this testcase, the encoder was not pre-

trained and the encoder weights were not frozen. We noticed that the training did only converge for 

the case of the “Sea” vs “No Sea” binary classification task, reaching an accuracy, precision and recall 

of 0.781, 0.812 and 0.743 respectively. For the other binary classification tasks the model failed to 



converge, indicating that the images in these datasets may contain too much variation (too many land 

use classes present in one image, waterbodies too small in comparison to image size) or unclear 

separation between two classes (e.g. no differences visible between broad-leaved and coniferous in a 

deforestated area). To our surprise, we must conclude that training a classifier with a purely 

supervised objective, using a classification head on top of a randomly initialized convolutional 

backbone with frozen weights, outperforms the end-to-end training where the weights of the encoder 

backbone are also updated during the training process. In our experiments, the end-to-end training 

led to an instable training process that was unable to converge in the case of three out of four  binary 

classification tasks  (Coniferous forest vs. broad-leaved forest, Urban fabric (both continuous and 

discontinuous) vs non-urban areas, Presence of waterbodies vs no waterbodies).  

 
 

4. CONCLUSION 

 

We presented an autoencoder model for image compression using the quantization method as 

implemented in the VQ-VAE-2 architecture, and added the DINO approach in the training procedure. 

We showed a small trade-off in image reconstruction accuracy vs compression ratio, while the scores 

on the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) were comparable 

to a jpeg2000 baseline with a comparable compression factor. 

The impact of image quality loss caused by the compression-reconstruction was tested on the 

downstream task of image segmentation, using data from the AI4EO challenge [11] where the goal 

was to map cultivated land using Copernicus Sentinel imagery. We concluded that the compression-

reconstruction of the input images using VQVAE-FPN did have a negative impact on the accuracy 

of the detected cultivated land in the super-resolved output maps although this impact was very small 

(0.006). The main impact was visible in the very fine details of the super-resolved output map.  

To test the semantic quality of the encoded features of the quantized feature vectors, we set up an 

experiment where a classifier was trained using the encoded features (quantized or non-quantized) as 

direct input. A classifier was created for 4 different binary classification tasks based on different 

subsets of the BigEarthNet dataset [10]. For each binary classifier, we noticed a decrease in 

classification accuracy as the encoder is finetuned further for the reconstruction task (increasing SSIM 

scores). We also noticed that classification using the non-quantized top feature map consistently 

produced higher accuracy than classification using the quantized top-level feature map as input to the 

classifier. With the applicability for space missions in mind, this poses a trade-off between training 

for reconstruction accuracy vs. useability of the compressed features for classification.  Furthermore, 

increasing the size of the codebook will lead to a smaller bottleneck in quantization and might close 

the gap between classification accuracy using quantized vs non-quantized feature maps. However this 

will come at the cost of a decreased compression factor.  

To our surprise, our experiments showed that training a classifier using a classification head on top 

of a randomly initialized convolutional backbone with frozen weights, outperforms the end-to-end 

training where the weights of the encoder backbone are also updated during the training process.   

Future research will focus on enhancing the pre-training task either using DINO or another self-

supervised objective. Instead of training consecutively first on DINO and then on reconstruction, a 

combined training objective might lead to quantized feature maps with higher semantic quality. Since 

there is no theoretical restriction on the number of input channels in the input image, a possible 

follow-on opportunity would be to investigate the use of this method for hyperspectral missions.  
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