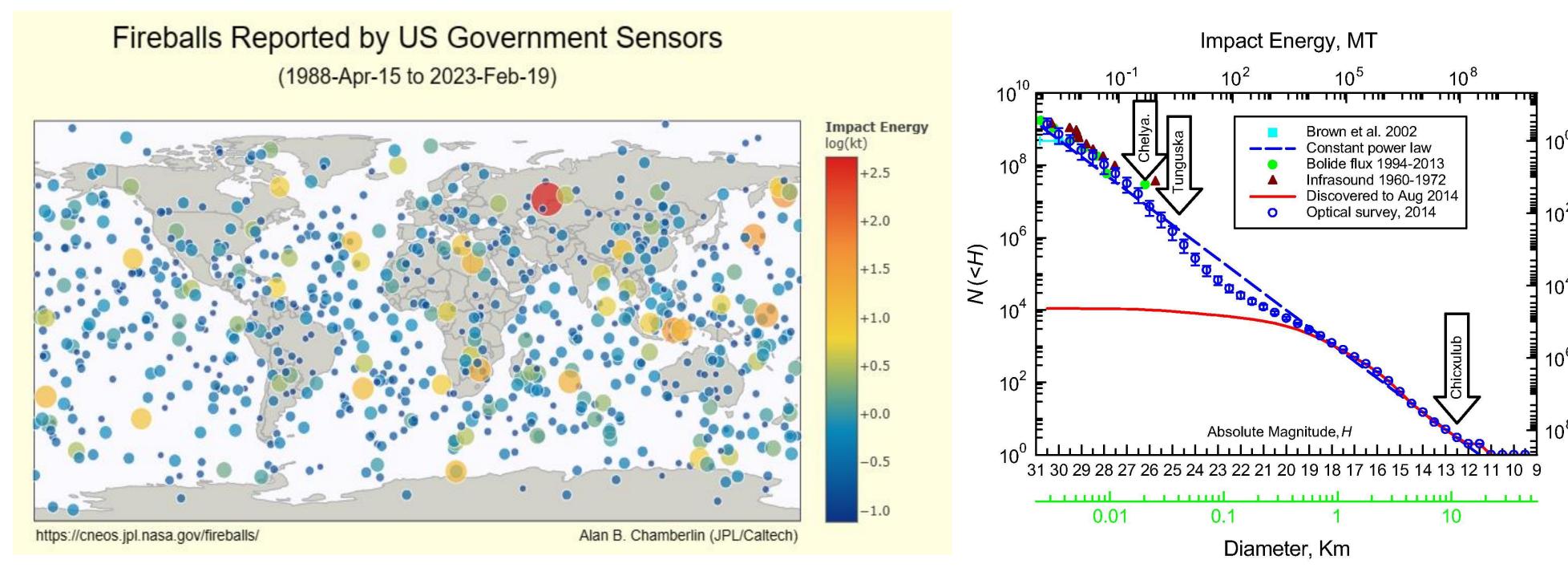


Research on Space-based Kinetic Impactor Destroying Small-sized Asteroids under


Short Warning Time Conditions

Wang Kaiduo, Li Mingtao, Zhou Qi, Wang Yirui

National Space Science Center, Chinese Academy of Sciences

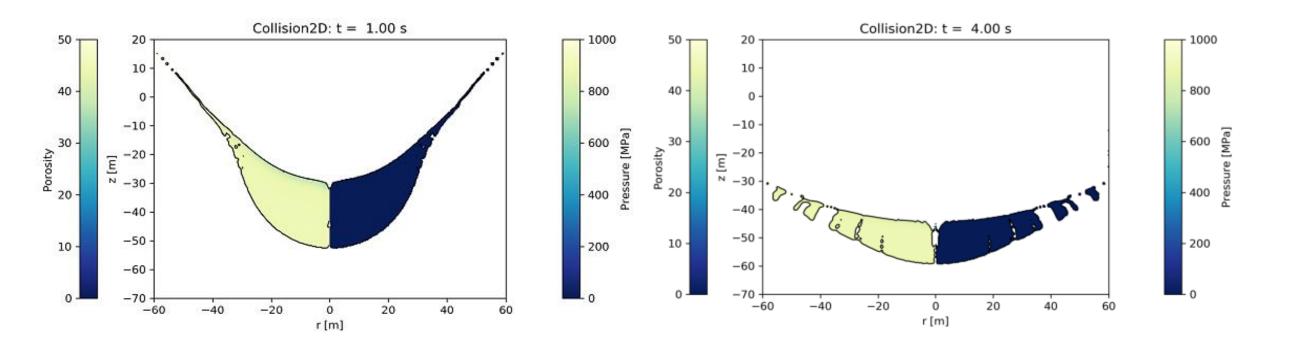
Only seven asteroid impact events (fire meteor events) have been successfully warned before they impact the Earth The most recent impact warning: 13 February 2023, an asteroid was discovered only a few hours before impact

There are more small-sized asteroids;

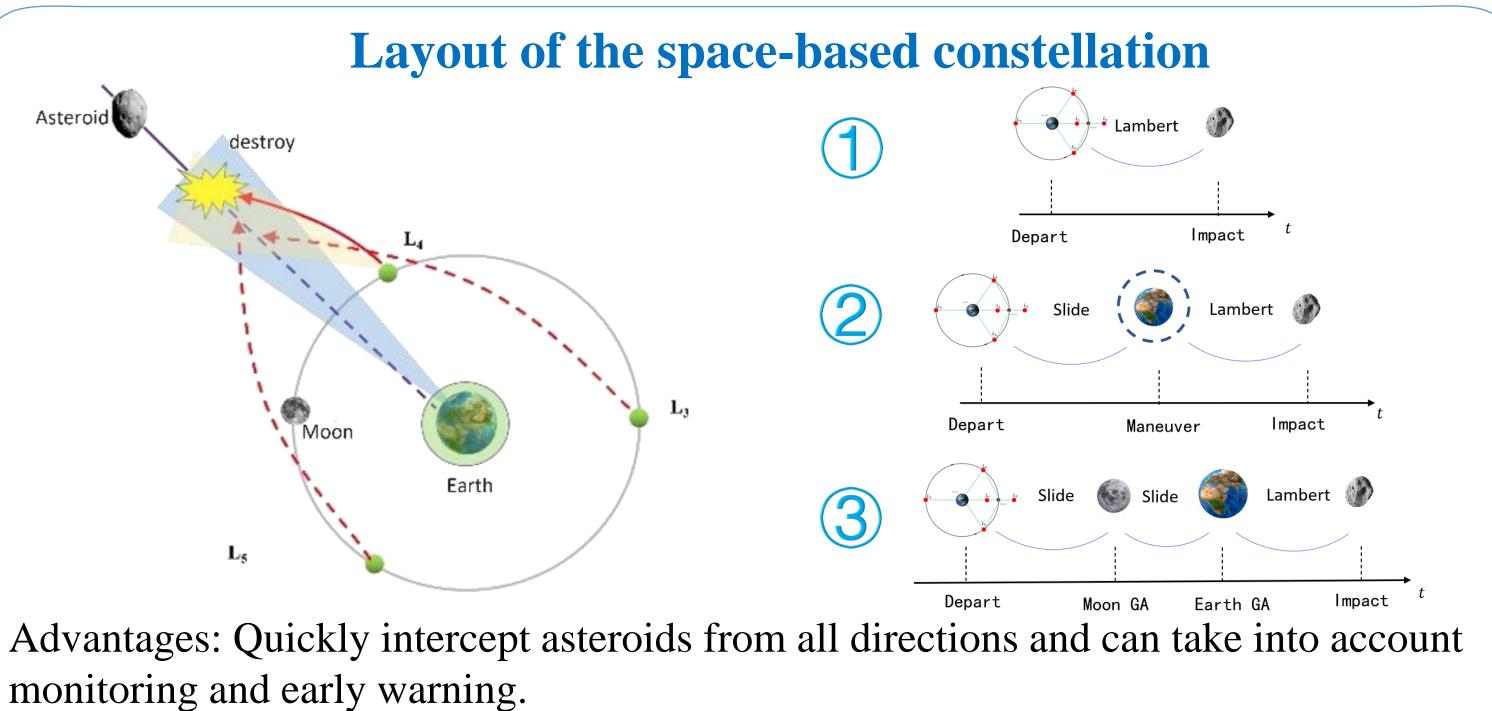
ears

a larger proportion of them are uncatalogued; small-sized asteroid impacts may be more frequent; currently, most asteroid defense research focuses on celestial bodies of 140 meters in size, with little research on the defense of asteroids below 50 meters in size.

The warning time is less than 2 years Impacting the Earth can cause a Chelyabinsk-level disaster Nuclear explosion: prone to security issues Kinetic Impact: can effectively defend, but it takes a long time


Kinetic destruction - effectively addressing the problem of short warning time for small-sized asteroids.

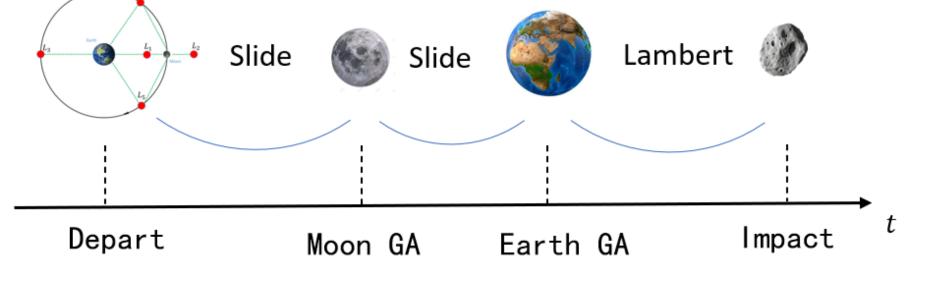
Conditions of destruction


iSALE is an impact dynamics code jointly developed by Imperial College London and the Berlin Leibniz Institute based on the SALE.

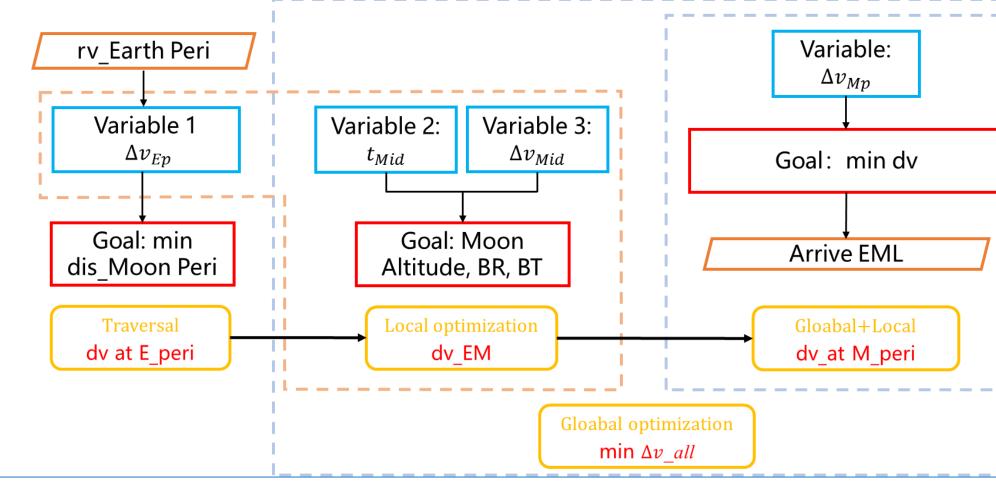
Grid type: ALE

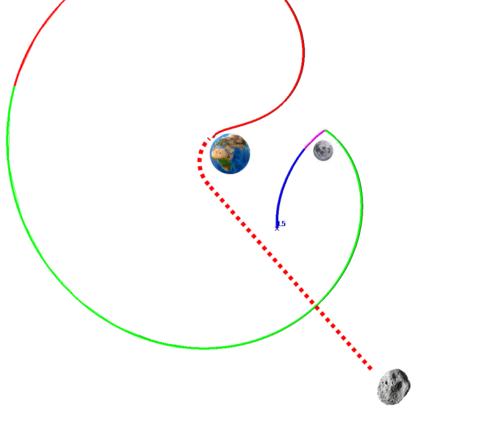
Features : 2D+3D, Finite Difference Method, Allowing material rheology, The strength/damage model usually used is the yield stress-deviatoric strain damage model based on Collins et al. (2004), Porosity: ε - α porosity model.

A 2t impactor, impacting an S-type asteroid with a diameter of about 50 meters and a porosity of 45% at a speed of 7km/s, can destroy it.

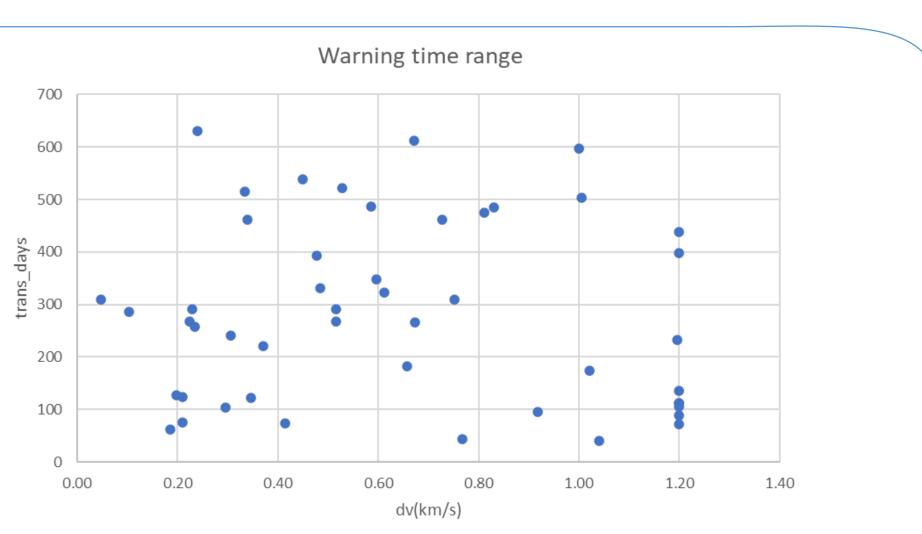

$$\frac{d^2 \mathbf{r}}{dt^2} = -\frac{\mu_s}{|\mathbf{r}|^3} \mathbf{r} - \sum_{i=1}^8 \mu_{pi} \left(\frac{1}{|\mathbf{r}_{pi}|^3} \mathbf{r}_{pi} + \frac{1}{|\mathbf{\rho}_{pi}|^3} \mathbf{\rho}_{pi} \right) + \mathbf{a}_{moon} + \mathbf{a}_{GR}$$

Dynamic Model: Central body, Third body, Relativistic effects


Layout of the space-based constellation—Trajectory design


	Lam	bert 🕜		-* Slide			
	Depart	Impact ^l	Depart	Mane			
n	$\overline{X} = [jd_{depar}]$ maxmize $J(\overline{X})$	$(\vec{x}) = r_{Crater}$		_{oart} , trans _{2ESO}			
	ibject to dv			maxmize j			
dis _{impact} > 1.5e6km $subject to dv < 1.$							
	Asteroid	2003 RU11		Asteroid			
	Diameter	27.26m		Diameter			
	Date CA	2034 9 17		Date CA			
	Distance CA	3.8 E_M distance		Distance CA			
	Depart Date	2034 7 27		Depart Date			
	Impact Date	2034 9 5		Impact Date			
	Trans Days	40 days		Trans Days			
	dv	1.04 km/s		dv			
	Impact v	5.80 km/s		Impact v			
	Impact mass	714 kg		Impact mass			

Advantages: By using the gravity assist of the Earth and Moon to change the orbital energy, the defense range can be expanded The combination of Earth gravity assist + Moon gravity assist + long-distance transfer mode can effectively reduce fuel consumption



小行星	2021 RO16			
直径	16.88m			
近地日期	2034 4 22			
近地距离	1.94 E_M distance			
Depart Date	2031 12 12			
Moon Ga Date	2031 12 28			
Earth Ga Date	2032 1 9			
Impact Date	2034 4 15			
dv	1.03 km/s			
Impact v	7.09 km/s			
Impact mass	710 kg			

Asteroid	Diameter		cal_(distance		
2020 GB1	14.30	2035	4	7	16	1.35
2020 GY1	16.42	2033	4	5	5	2.45
2021 RO16	16.88	2034	4	22	4	1.94
2020 KQ4	17.20	2031	5	24	7	3.77
2016 JA6	18.86	2031	11	6	3	2.84
2014 XC8	18.86	2034	5	24	15	3.55
2004 DF2	20.68	2032	4	22	21	3.25
2020 DK	21.06	2032	2	9	14	3.74
2020 UC4	20.77	2033	6	17	20	2.36
2022 CO6	21.16	2033	2	15	12	3.22
2011 AH5	21.65	2031	7	20	19	3.90
2008 DB	23.74	2032	8	14	14	0.33
2016 DY21	23.74	2035	2	17	20	4.19
2014 YN	24.86	2030	11	11	6	3.38
2020 UE	26.76	2034	10	15	14	2.95
2003 RU11	27.26	2034	9	17	14	3.80
2022 SW	32.17	2035	9	16	2	4.25
2018 VB7	32.77	2032	10	31	20	3.40
2019 WG2	37.63	2032	11	22	6	2.75
2022 QX4	39.58	2031	9	7	5	3.67
2020 TJ3	41.26	2035	5	3	12	3.88

Analysis of defensive effects

Select 21 asteroids as simulation targets based on the following criteria:

 \cdot real asteroids

 \cdot with a diameter of 15-50m

- Flyby Earth between 2031 and 2035
- \cdot flyby at a distance less than 5 times the Earth-Moon distance.

The impact can be completed within two years, with a minimum transfer time of 40 days and a maximum of no more than 630 days. The impact locations are all outside the Earth's Sphere of Influence. The average velocity increment is 0.6km/s. The maximum velocity increment does not exceed 1.2km/s. All asteroids can be destroyed.

 Sequence 1
 All

 Sequence 2
 2020KQ4, 2020DK, 2020UC4, 2014YN, 2022SW, 2022QX4, 2020TJ3 (7 NEOS)

	dv limit	warning time	impactable asteroids	positive deflections	disruption	effective disposal	average dv
21 Asteroids	1.2km/s	2years	21	4	21	21	608.95m/s

中国科学院国家空间科学中心 National Space Science Center, CAS

wangkaiduo20@mails.ucas.ac.cn