PDC2023 Vienna, Austria

Ongoing and Upcoming Mission Highlights Key International and Policy Developments Near-Earth Object (NEO) Discovery NEO Characterization **Deflection / Disruption Modeling & Testing** Space Mission & Campaign Design Impact Effects & Consequences Disaster Management & Impact Response Public Education and Communication The Decision to Act: Political, Legal, Social, and Economic Aspects

DETERMINATION OF DIMORPHOS'S CHANGE IN VELOCITY RESULTING FROM THE DART KINETIC IMPACT

Harrison F. Agrusa^(1,2), Andrew F. Cheng⁽³⁾, Brent W. Barbee⁽⁴⁾, Alex J. Meyer⁽⁵⁾, Tony L. Farnham⁽²⁾, Sabina D. Raducan⁽⁶⁾, Derek C. Richardson⁽²⁾, Elisabetta Dotto⁽⁷⁾, Angelo Zinzi⁽⁸⁾, Vincenzo Della Corte⁽⁹⁾, Thomas S. Statler⁽¹⁰⁾, Steven Chesley⁽¹¹⁾, Shantanu P. Naidu⁽¹¹⁾, Masatoshi Hirabayashi⁽¹²⁾, Jian-Yang Li⁽¹³⁾, Siegfried Eggl⁽¹⁴⁾, and the DART and LICIACube Teams ⁽¹⁾ Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France ⁽²⁾ University of Maryland, College Park, MD, USA, hagrusa@astro.umd.edu ⁽³⁾ Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, USA ⁽⁴⁾ NASA/Goddard Space Flight Center, Greenbelt, MD, USA ⁽⁵⁾ Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, CO, USA ⁽⁶⁾Space Research and Planetary Sciences, Physikalisches Institut, University of Bern. Switzerland ⁽⁷⁾INAF-Osservatorio Astronomico di Roma, Italy ⁽⁸⁾ASI-Space Science Data Center, Roma, Italy ⁽⁹⁾INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy ⁽¹⁰⁾Planetary Defense Coordination Office and Planetary Science Division, NASA Headquarters, 300 Hidden Figures Way SW, Washington DC 20546, USA ⁽¹¹⁾Jet Propulsion Laboratory, California Institute of Technology ⁽¹²⁾Auburn University, Auburn, AL, USA ⁽¹³⁾Planetary Science Institute, Tucson, AZ, USA ⁽¹⁴⁾Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL, USA

Keywords: DART Mission, Kinetic Impactor, Beta, Deflection,

ABSTRACT

On September 26, 2022, NASA's Double Asteroid Redirection Test (DART) mission successfully impacted the asteroid Dimorphos, the secondary component of the (65803) Didymos binary system [1]. With ground-based radar and photometric observations, it was determined that the kinetic impact reduced the binary orbit period by approximately 33 minutes [2]. From our analysis of the orbit period change and other system parameters, we find that Dimorphos's along-track orbital velocity component changed by $\Delta v_T = -2.7 \pm 0.1$ mm/s [3]. This result was achieved using a Monte Carlo technique to sample over a range of plausible pre- and post-impact states of the Didymos system. The Monte Carlo routine was coupled to a Full Two-Body Problem (F2BP) code [4] to account for spin-orbit coupling resulting from the nonspherical shapes and close separation of the two binary components. Each Monte Carlo sample draws a pre-impact semimajor axis, pre-impact orbit period, and postimpact orbit period based on the orbital solution presented in [2]. It also samples over the shapes of Didymos and Dimorphos given in [1]. The F2BP code is used to numerically determine the Δv_T required to connect the pre- and post-impact orbital solution. We verify the numerical Δv_T with analytic models such as a simplified Keplerian approximation with a correction for Didymos's oblateness. The dominant sources of uncertainty in Δv_T are the post-impact orbit period and the pre-impact semimajor axis. The uncertainty in the post-impact orbit period will decrease as ground-based observations continue. We discuss prospects for refining the pre-impact semimajor axis based on a measurement of the post-impact semimajor axis following the arrival of the Hera spacecraft in late 2026 [5].

- [1] Daly et al., 2022 submitted
- [2] Thomas et al., 2022 submitted
- [3] Cheng et al., 2022 submitted
- [4] Davis & Scheeres 2022 *Icarus* **341** 113439 [5] Michel *et al.*, 2022 *Planet. Sci. J.* **3** 160

Comments:

Oral, please schedule this talk immediately before the abstract submitted by A.F. Cheng. His talk will be based on the results of this one.