

The Evolution of Shape: Designing the Next Generation of Kinetic Impactors

Patrick King¹, Mallory DeCoster¹, Dawn Graninger¹, Angela Stickle¹

Session 5: Deflection/Disruption Testing & Modeling

Paper 149 04/05/23

¹Johns Hopkins University Applied Physics Laboratory Space Exploration Sector 11100 Johns Hopkins Road Laurel, MD 20723

The authors would like to acknowledge funding from NASA YORPD (Grant Number 80NSSC22K0242).

Overview

- The Evolution of Shape: Designing the Next Generation Kinetic Impactor for Planetary Defense (PI: Mallory DeCoster) is our currently funded YORPD grant to explore ways to optimize kinetic impactor design.
- We will present our latest numerical studies on the effects of projectile shape on effectiveness, as measured by the impact on β .
- We focus in this particular study on variations in a ballistic shape known as an ogive.

CTH Simulations

- For the current study, we focused on conducting 2D axisymmetric (2DC) impacts to maximize resolution and minimize runtime and storage requirements.
- 20 meter wide, 20 meter deep target with 40 meters above for ejecta to travel; 5 levels of AMR refinement to a minimum resolution of ~1 cm (minimum CPPR width-wise of 25 depending on target shape)
 - Standard refinement criteria are chosen (refining on shock and interfaces)
- The projectiles are all 500 kg aluminum ogives and the target is either a weak or strong basalt target (described later)
 - SESAME tables for aluminum and dry_sand
 - A single discard criterion (10% density) is used to eliminate badly behaved expanded zones

Example material plot (target blue, impactor orange) for the RL02, 6.65 km/s, Weak target case (described later) at 0 and 0.2 seconds

Exploring Impactor Shape: the Ogive

- A commonly studied shape in the ballistics literature is the ogive, which is formed by taking a section of a circle and rotating it.
- We chose to use the tangent ogive (full half cap) as a way to vary the contact angle. This is controlled by varying the radius (R) to length (L) ratio, R/L.
- We used 4 R/L ratios, ranging from nearly hemispherical (R/L = 0.8) to more rod-like (R/L = 0.2) with intermediate values (0.6 and 0.2)
- Each impactor had the same total mass (500 kg)

Tangent Ogive is parameterized by it's Radius to Length ratio

Run Matrix and Target Strength Models

Impact Speed	Strong Target	Weak Target
2 km/s	RL02, RL04, RL06, RL08	RL02, RL04, RL06, RL08
6.65 km/s	RL02, RL04, RL06, RL08	RL02, RL04, RL06, RL08
15 km/s	RL02, RL04, RL06, RL08	RL02, RL04, RL06, RL08

- 3 Impact Speeds (2 km/s, 6.65 km/s, 15 km/s)
- 4 Ogive Shapes (R/L = 0.2, 0.4, 0.6, 0.8)
- 2 Target Strength Models (Weak/Strong)
- Both strength models are the CTH Geological Yield Surface (GEO) model with user-defined Johnson-Cook fracture and appropriate spall (FRACTS) parameters.
 - The weak model has a negative DYDP and should behave as a granular material

RL04, RL06, RL08			
RL04, RL06, RL08	Parameter	Strong Model	Weak Model
Yield Strength at Zero Pressure —	YIELD	1.0E10	1.0E10
	YZERO	4.0E8	1.0E1
Slope of Yield → Surface	DYDP	0.5	-0.8
	POISSON	0.25	0.25
	JFD1	0.05	0.05
	JFTM	0.16	0.16
Tensile Strength →	JFPF0	-8.0E8	-1.0E1
	JFWM	10.0	10.0
Fracture Pressure →	PFRAC2	-8.0E8	-1.0E1

Strength Model (GEO + FRACTS) Parameters

Results for Strong Target

- β curves in time for the strong target level off relatively rapidly, by 0.1 seconds
- Few trends in the ogive shape (colors) are discernible
- Strongest effect seems to be speed in this case, but the 6.65 and 15 km/s have relatively small differences
- 2 km/s is less efficient

Results for Weak Target

- β curves for the weak target take longer to level off (by 0.2 seconds)
- Similar trends as strong target, with higher overall β achieved
- 2 km/s is again less efficient than the other two cases

Conclusions and Future Directions

- β enhancement of about +1.5 for the weaker target relative to strong target (consistent with expectations and previous work)
- Little different between 6.65 and 15 km/s
- Ogive shape seems to be a ~10% effect
- Will be exploring 3D comparisons and oblique ogive impacts in the immediate future
- Questions?

JOHNS HOPKINS APPLIED PHYSICS LABORATORY