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Abstract - Over the last decade, rapid developments in digital technologies and in our capability to 
monitor our home planet from space with Earth Observation (EO) satellites have enabled 
unprecedented monitoring of the Earth's environment bringing new and huge opportunities for 
science and businesses. CHIME will produce a near-continuous stream of high-dimensional data 
resulting in unprecedented data volumes. This calls for fast and computationally efficient methods 
for the storage, transmission and analysis of the data. Artificial Intelligence (AI) processes carried 
out on-board of the satellite holds special promise for hyperspectral missions such as CHIME, as 
processing the data on-board can reduce the time and cost of data transfer and processing, enabling 
to send only the most valuable insights to the ground, and focusing on rapid responses to events and 
detected phenomena that impact our society and require fast decision-making. CHIME makes use of 
AI-powered data management as part of its baseline. Machine Learning-based cloud detection on-
board the CHIME satellite allows to reduce the unprecedented data volumes while maximizing the 
science return. A more ambitious goal has been also set and is currently being analyzed, in order to 
enhance CHIME on-board intelligence and autonomy capabilities by means of AI. The objective is 
to identify new potential use cases suitable for AI processing on-board (e.g., rapid response and 
environmental awareness, for fast decision-making). The paper will present the technological and 
operational challenges that the use of Artificial Intelligence on-board a satellite implies for an 
Operational Mission like CHIME, where high reliability and high availability are requested. 
 
 
1 INTRODUCTION 
 
The Copernicus Sentinel Expansion missions meet priority user needs not addressed by the existing 
infrastructure, and/or  reinforce existing services by monitoring capability in the thematic domains of 
CO2, polar, and agriculture/forestry. Hyperspectral imaging today enables the observation and 
monitoring of Earth surface properties (geo-biophysical and geo-biochemical variables) thanks to the 
diagnostic capability of spectroscopy provided through contiguous, gapless spectral  measurement of 
light interacting with the matter from the visible to the shortwave infrared portion of the electro-
magnetic spectrum [1]. 
Quantitative variables derived from the observed spectra, e.g., directly through distinct absorption 
features, are diagnostic for a range of new and improved Copernicus services with a focus on the 
management of natural resources. These services support the monitoring, implementation and 
improvement of a range of related policies and decisions. 
The observational requirements of CHIME (Copernicus Hyperspectral Imaging Mission for the 
Environment) are driven by its primary application domains i.e., agriculture, soils, food security and 
raw materials, and are based on experience, state-of-the-art technology and results of previous 
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hyperspectral airborne and experimental spaceborne systems. The main Mission and System 
parameters are summarized here: 
 

• On-ground swath ~130 Km (at equator) 
• Spatial Sampling Distance (SSD) < 30 m 
• > 200 spectral channels within 400-2500 nm 
• Spectral Sampling Interval < 10 nm 
• Instrument data throughput > 5 Gbps 
• Transmission on a Ka-Band single polarization: up to 3.7 Gbps 
• Revisit time (2 satellites): ~ 11 days 

 
Due to the required high spatial and spectral resolution, CHIME will produce a near-continuous 
stream of high-dimensional data resulting in a very high data throughput (> 5 Gbps) and in 
unprecedented data volumes (ca. 106 Tbits/day of uncompressed data). 
The application on board of Artificial Intelligence (AI) techniques holds special promise for hyper-
spectral missions such as CHIME, as processing the data on board can reduce the time and cost of 
data download to ground stations, enabling to send to ground only the most valuable science data, 
and focusing on rapid responses to events and detected phenomena that impact our society and require 
fast decision-making. 
AI is a bigger concept to create intelligent machines that can simulate human thinking capability and 
behavior, whereas machine learning is an application or subset of AI that allows machines to learn 
from data without being programmed explicitly. Machine Learning (ML) enables a computer system 
to make predictions or take some decisions using historical data (training data set) without being 
explicitly programmed. Machine learning uses a massive amount of structured and semi-structured 
data so that a machine learning model can generate accurate result or give predictions based on that 
data. Typical ML models include Deep Neural Networks (DNN), Support Vector Machines (SVM), 
Bayesian Networks, Random Forest, and many more. 
Whilst the application of AI techniques on ground is a very established practice, the application on 
board is quite an uncharted territory, that is object of several studies and activities, since it implies to 
overcome several technological and operational challenges. At the time of this writing, CHIME is 
foreseen to be the first ESA (European Space Agency) Operational Mission to infer AI on board. The 
CHIME implementation lays on the solid foundation set by two experimental ESA CubeSats, that 
were used as flying laboratories for AI: Φ-Sat-1 [2] and OPS-SAT [3]. 
Clouds are the most promising target for on-board screening since they are a common yet 
unpredictable contaminant that prevents direct observations of surface features. Previous studies 
indicate that clouds account for over half of the annual sky cover globally. Thus, onboard cloud 
screening could approximately double the science productivity per downlink without changing the 
total stored or transmitted data volumes [4]. Here, we will show how autonomous cloud screening 
have been efficiently implemented on board using ML techniques. 
In the second part of this paper, we will report the feasibility study that has been performed, in order 
to further enhance the AI capabilities of CHIME. The objective is to identify new potential use cases 
suitable for AI processing on board (e.g., rapid response and environmental awareness, for fast 
decision-making). The paper will present the technological and operational challenges that the use of 
Artificial Intelligence on board implies for an Operational Mission like CHIME, where high 
reliability and high availability are requested. 
 
 
2 ON-BOARD SATELLITE CLOUD DETECTION  
 
Continuous monitoring with hyperspectral sensors typically implies gigabits per second data rates 
and, in case of uncompressed data, data volumes in an order of magnitude of Terabits per orbit are 
expected, as it is the case for CHIME. Therefore, for both on-board memory management and 
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compatibility of current downlink solutions, on board optimized data compression is expected. 
Considering the significant presence of clouds hiding the ground, in particular for missions with 
continuous Earth acquisitions, selective compression brings a major benefit when applied to the 
clouds. The principle of selective compression is to adapt the compression to different classes. In the 
case of cloud compression, the objective is to allow a higher loss to the clouds compared to the clear 
(or ground) pixels, for an improved data rate reduction. 
For dedicated compression on clouds, as illustrated on Fig.1, the first step of the compression chain 
is the cloud detection. Cloud map issued from cloud detection process classifies hyperspectral pixels 
as cloudy or not. This map is then used as input to the compressor. Three different schemes based on 
the new multispectral and hyperspectral image compression CCSDS standard [6] have been studied. 
The first one applies a pre-quantization to the cloud pixels before getting into the compressor. The 
two other approaches act inside the CCSDS compression: one by an adaptation of the prediction stage 
according to the class of pixels, the latter one by directly operating on the output of the prediction [5]. 

Here we will focus on the cloud detection 
implementation on-board. 
Cloud detection is widely used on ground for 
cloud classification: several methods are 
operational, such as physical approaches (or 
“threshold” approaches) applied to Landsat 
and to Sentinel-2 [7]. Artificial Intelligence 
(AI) techniques give very good perspectives 
for on-board cloud detection, in particular 
those based on Deep Neural Network (DNN). 
However, DNN generally requires higher 
memory and computational resources, 
compared to threshold approaches, making the 

implementation on board difficult, due to the limited availability of processing resources. Being 
CHIME an Operational mission, high reliability and high availability are requested, making 
impossible the use on board of COTS AI accelerators. 
However, other ML models can be a good compromise between required detection accuracy and 
computational complexity. Support Vector Machine (SVM) model has been selected, which simply 
use local information (TOA reflectance values) at pixel level from different spectral bands, thus 
requiring limited resources for on-board implementation. Here in this paper, we will compare two 

methods (Threshold and Support Vector 
Machine), targeting on-board implementation. 
For on-board compression purposes, no cloud-
type classification is required; the objective is 
only to detect opaque clouds hiding the ground. 
Indeed, the translucent clouds (e.g., cirrus 
clouds) still contain ground information, and thus 
are considered as “ground” pixels. The Threshold 
and the SVM approaches have been defined 
according to this need. 
The Threshold method can be seen as a 
“physical” approach as it allows to discriminate 

the clouds from the other on-ground features by the means of threshold tests on dedicated spectral 
bands, and on specific indexes to discriminate high reflective surface from clouds (e.g., snow). The 
SVM approach allows to separate the pixels into two classes (ground or cloud) in an N-dimensional 
space. This approach is part of Machine Learning techniques, and needs a training data set in order 
to find the optimal hyperplane between the two classes. For the on-board implementation, the 
dimension N has been limited to the useful bands and indexes from the physical approach. The 
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ABSTRACT 

Future hyperspectral satellite Earth observation 
missions will provide numerous bands in VNIR and 
SWIR domain, with wide swath and small spatial 
sampling distance. The amount of data to be transmitted 
is large, and image compression becomes mandatory. 
Considering the significant presence of clouds hiding 
the ground in the acquisitions, this work explores some 
possibilities to increase the reduction of on-board data 
volume, and downlink data rate, with a selective 
compression applied to the clouds. 
CCSDS SLS-MHDC Working Group has established 
the CCSDS 123.0-B-2 recommended standard for a 
low-complexity data compression applied to 
multispectral and hyperspectral sensors. The 
recommendation provides an effective method for 
performing lossless or near-lossless compression, with a 
control of the error that can be band-dependent; 
however, this standard does not include a possibility for 
a selective compression in the spatial dimension.  
Three different selective schemes have been established, 
all based on the CCSDS recommendation, but with 
potential adaptations to get a lower bit rate on clouds. 
The on-board compression chain includes a cloud 
detection algorithm selected for its performance, but 
also for its high adaptability for future evolutions. The 
data reduction and impact on cloud radiometry have 
been assessed on hyperspectral AVIRIS images and 
using simulated scene representative of the future 
European Copernicus Hyperspectral Imaging Mission 
for the Environment (CHIME). 
 
 
1. INTRODUCTION 

Clouds are estimated to cover about 67% of the Earth 
surface over a year. For satellite acquisitions, even after 
elimination of partially cloudy and cloud edge pixels, 
the total cloud cover remains close to 50% [1]. Many 
applications which need to estimate Earth surface 
properties from satellite images are useless in the 
presence of such opaque clouds in the image, making 
half of the acquisitions unusable for Earth science 
application purposes. 
For satellite continuous monitoring with hyperspectral 
sensors implying typically gigabits per second data rate, 
uncompressed data implies a Terabits memory volume 
order of magnitude per orbit as expected on Copernicus 

Hyperspectral Imaging Mission for Environment 
(CHIME) [2].  
Therefore, for both on-board memory management and 
compatibility of current downlink solutions, on board 
optimized compression is expected. Considering the 
significant presence of clouds hiding the ground, in 
particular for missions with continuous Earth 
acquisitions, this work explores some possibilities of 
selective compression applied to the clouds. The 
principle of selective compression is to adapt the 
compression to different classes. In the case of cloud 
compression, the objective is to allow a higher loss to 
the clouds compared to the clear (or ground) pixels, for 
an improved data rate reduction. 
For dedicated compression on clouds, as illustrated on 
Fig.1, the first step of the compression chain is the cloud 
detection. Two methods (Threshold and Support Vector 
Machine) are compared targeting on-board 
implementation. Cloud map issued from cloud detection 
process classifies hyperspectral pixels as cloudy or not. 
This map is then used as input to the compressor. Three 
different schemes based on the new multispectral and 
hyperspectral image compression CCSDS standard [3] 
have been studied: The first one applies a pre-
quantization to the cloud pixels before getting into the 
compressor. The two other approaches act inside the 
CCSDS compression: one by an adaptation of the 
prediction stage according to the class of pixels, the 
latter one by directly operating on the output of the 
prediction. 
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Figure 1. Generic cloud compression scheme  

 
The performance of the cloud compression schemes 
have been assessed on hyperspectral AVIRIS images 
and using simulated scene representative of the future 
CHIME mission that has been the framework of this 
study. 

Figure 1 - Generic cloud compression scheme 

 

2. CLOUD DETECTION  

The first step of the compression scheme is the cloud 
detection. Cloud detection is widely used on-ground for 
cloud classification: several methods are operational, 
VXch aV Sh\Vical aSSURach (RU ³WhUeVhRld´ aSSURach) 
applied to Landsat [4] and to Sentinel-2 [5], or approach 
based on Support Vector Machine (SVM) applied in 
particular on a French mission, and on Thales Alenia 
Space export program. Some experiments have also 
been performed on-board with threshold approach [6].  
Artificial Intelligence (AI) technics give very good 
perspectives for on-board cloud detection, in particular 
those based on Convolutional Neural Network (CNN) 
for which Thales Alenia Space is involved [7]. 
However, AI generally requires higher memory and 
processing, compared to threshold and SVM approaches 
which simply use local information at pixel level from 
different spectral bands.  
For on-board compression purpose, no cloud 
classification is required; the objective is only to detect 
opaque clouds hiding the ground. Indeed, the 
translucent clouds (e.g. cirrus clouds) still contain 
ground information as illustrates Fig.2, and thus are 
considered as ³ground´ pixels. The threshold and the 
SVM approaches have been defined according to this 
need.  
 

 
cloud mask in red  

 
Figure 2. Translucent clouds contain ground 

information (extract from Landsat data base [8]) 
 
The WhUeVhRld meWhRd can be Veen aV a ³Sh\Vical´ 
approach as it allows to discriminate the clouds from the 
other on-ground features by the mean of threshold tests 
on dedicated spectral bands, and on specific indexes to 
discriminate high reflective surface from clouds (e.g. 
snow).  
The SVM approach allows to separate the pixels into 
two classes (ground or cloud) in a N- dimension space. 
This approach is part of machine learning technics, and 
needs a training data set in order to find the optimal 
hyperplane between the two classes. For the on-board 
implementation, the dimension N has been limited to 
the useful bands and indexes from the physical 
approach. The training stage is performed on-ground 
and thus has no impact on the on-board processing, 

except the capability to upload the SVM parameters if 
needed.  
In order to be free of solar illumination, a radiometric 
conversion in Top-Of-Atmosphere reflectance is 
performed only on the bands selected for cloud 
detection, so with a limited impact on the on-board 
complexity.  
The performance of the cloud detection has been 
assessed on Landsat cloud data base [8]. It includes 80 
scenes from Landsat 8 with clouds over different types 
Rf landVcaSeV (land, Vea, deVeUW, VnRZ eWc«), and feZ 
scenes without cloud. A classification is associated to 
each image, with in particular a cloud mask (Fig.3).  
 

 
Figure 3. Example of Landsat classification 
 with cloud mask (right) identified in white. 

(Courtesy of USGS) 
 
The cloud mask includes opaque clouds but also 
translucent clouds (Fig.2). Such clouds are not frequent 
in the data base and therefore have a limited influence 
on the performance assessment and on the objective 
being to not detect ground pixel as cloud.  
Half of scenes have been considered for the training and 
the second half for the tests. Some examples of cloud 
detection results are given on Fig.4. Visually, the cloud 
detection is good for most of the test images, with no 
remarkable differences between the two approaches.  

Threshold approach SVM approach

 

 
Figure 4. Example of cloud detection results - clouds 

are in red (left original– middle threshold– right SVM). 
 
However, few critical cases occur that significantly split 
from the rest of the results. One case with snow, 
certainly old or melted snow, and one case on a salted 
area with the threshold approach as depicted on Fig.5. 
The SVM fails once on a desert scene certainly due to 
the fact that such landscape was not part of the limited 
training set for the tests (Fig.6). (Operationally, the 
training data base shall contain several hundreds of 
scenes for all types of clouds and landscapes).  

Figure 2 - Example of Landsat classification with cloud mask 
(right) identified in white (Courtesy of USGS) 
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training stage is performed on-ground and thus has no impact on the on-board processing, except the 
capability to upload the SVM parameters if needed. 
In order to be free of solar illumination, a radiometric conversion in Top-Of-Atmosphere reflectance 
is performed only on the bands selected for cloud detection, so with a limited impact on the on-board 
complexity. 
The performance of the cloud detection has been assessed on Landsat cloud data base [8]. It includes 
80 scenes from Landsat 8 with clouds over different types of landscapes (land, sea, desert, snow, 
etc.), and few scenes without clouds. A segmentation is associated to each image, with in particular 
a cloud mask (Fig. 2). The cloud mask includes opaque clouds but also translucent clouds. Such 
clouds are not frequent in the database and therefore have a limited influence on the performance 
assessment and on the objective being to not detect ground pixel as cloud. Half of scenes have been 
considered for the training and the second half for the tests. Some examples of cloud detection results 
are given in Fig. 3. Visually, the cloud detection is good for most of the test images, with no 

remarkable differences between the two 
approaches. 
However, few critical cases occur that 
significantly split from the rest of the results. 
One case with snow, certainly old or melted 
snow, and one case on a salted area with the 
threshold approach. The SVM fails once on 
a desert scene certainly due to the fact that 
such landscape was not part of the limited 
training set for the tests. Ideally, in an 
operational environment, the training data 
base shall contain several hundreds of 

scenes for all types of clouds and landscapes, in order to limit the outliers. For those critical cases, 
the false positive error rate (defined as the proportion of ground pixel incorrectly detected as cloud) 
is higher than 10%. For the other test scenes, the false positive error rate is low, leading, for all the 
test images an average of 0.9% with the physical approach and 0.6% with the SVM. 
In order to reduce the false positive detection, a spatial filter has been added. It is applied on the raw 
binary cloud map to eliminate isolated detections or detections at the border of clouds (no filing). An 
example of the benefit for a filter radius of 3 is given in Fig. 4. 

Retained cloud detection approach is built 
around the SVM approach followed by 
the simple spatial filtering. 
The SVM approach has been selected, not 
only for its advantage on the global false 
positive error rate, but also for its 
performance already proven on 
multispectral ground segments and for its 
high adaptability to evolutions (e.g., 
additional hyperspectral band(s) for cloud 
detection improvement). The SVM is 
pixel-based and is defined with 
appropriate bands and indexes, the filter 
requires only few lines, making the cloud 
detection implementable on board [9]. 
The SVM parameters are expected to be 
stable, and are determined on-ground, 
thanks to a training stage. The output of 
cloud detection is a spatial binary map 
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The cloud mask includes opaque clouds but also 
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on the performance assessment and on the objective 
being to not detect ground pixel as cloud.  
Half of scenes have been considered for the training and 
the second half for the tests. Some examples of cloud 
detection results are given on Fig.4. Visually, the cloud 
detection is good for most of the test images, with no 
remarkable differences between the two approaches.  

Threshold approach SVM approach

 

 
Figure 4. Example of cloud detection results - clouds 

are in red (left original– middle threshold– right SVM). 
 
However, few critical cases occur that significantly split 
from the rest of the results. One case with snow, 
certainly old or melted snow, and one case on a salted 
area with the threshold approach as depicted on Fig.5. 
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Figure 3 - Example of cloud detection results - clouds are in red (left 
original– middle threshold– right SVM) 

 

For those critical cases, the false positive error rate 
(defined as the proportion of ground pixel incorrectly 
detected as cloud) is higher than 10%. For the other test 
scenes, the false positive error rate is low, leading, for 
all the test images an average of 0.9% with the physical 
approach and 0.6% with the SVM.  

Threshold approach SVM approach

FP: 12.2% FP: 2.2%  
FP: 12.5 % FP: 0.63 % 

 
Figure 5. Critical cases met with threshold approach 

FP: 0.0 % FP: 10.7 % 

Threshold approach SVM approach

 
Figure 6. Critical case met with SVM approach 

 
In order to reduce the false positive detection, a median 
filter has been added. It is applied on the raw binary 
cloud map to eliminate isolated detections or detections 
at the border of clouds (no filing). The curves of Fig.7 
show for different Landsat images that a small filter 
leads to significant reduction of false positive error. An 
example of the benefit for a filter radius of 3 is given on 
Fig.8.  
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Figure 7. Results of cloud map filtering for different test 

images– small filter leads to significant reduction of 
false positive error rate  

 
Retained cloud detection is built around the SVM 
approach followed by the simple median filtering.  

The SVM approach has been selected, not only for its 
short advantage on the global false positive error rate, 
but also for its performance already proven on 
multispectral ground segments and for its high 
adaptability to evolutions. (e.g. additional hyperspectral 
band(s) for cloud detection improvement). The SVM is 
pixel-based and is defined with appropriate bands and 
indexes, the filter requires only few lines, making the 
cloud detection implementable on-board [9]. The SVM 
parameters are expected to be stable, and are determined 
on-ground, thanks to a training stage. The output of 
cloud detection is a spatial binary map ready for 
selective cloud compression, which identifies each 
h\SeUVSecWUaO SL[eO aV ³cORXd´ RU ³QRW cORXd´ (L.e. 
ground). 

Original image Image + raw cloud map (FP=2.14%)

Image + filtered cloud map (FP=0.56%)Reference  cloud mask

 
Figure 8. Benefit of the simple cloud map filtering;   
the false positive decreases from 2.14 % to 0.56%  

 
3. SELECTIVE SPATIAL/SPECTRAL 

COMPRESSION  

Three schemes have been studied and compared to the 
reference multispectral and hyperspectral CCSDS 
123.0-B-2 standard compression [3] with no distinction 
on clouds. Both lossless and near-lossless modes have 
been considered. For the near-lossless mode, the 
absolute error limit has been set to a band-dependent 
low error that is one third of the instrument noise 
required for the CHIME mission.  
 
3.1. Scheme 1: Pre-Quantization  

The purpose of the scheme 1 is to keep the CCSDS 
standard compressor without any change. The cloud 
compression is performed thanks to a pre-quantization 
that is applied to the pixels detected as cloud before the 
compressor (Fig.9). The pre-quantization can apply for 
all spectral bands, but it is possible to make exceptions 
for selected bands. The rationale is that cloud 
information in some bands may be required for on-
ground post-processing or might be considered useful 
by some end-users. With this scheme, the compressor 

Figure 4 - Benefit of the simple cloud map filtering: the false positive 
decreases from 2.14 % to 0.56% 
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ready for selective cloud compression, which identifies each hyperspectral pixel as “cloud” or “not 
cloud” (i.e., ground). 
 
 
3 ON-BOARD SATELLITE AI ENHANCEMENT 
 
Here we report the preliminary results of a feasibility study, whose ambitious goal is to enhance the 
AI capabilities of CHIME. The objective is to identify new potential use cases suitable for AI 
processing on board (e.g., environmental awareness and detection of phenomena that require rapid 
response, for fast decision-making). The implementation of the AI enhancement on board may require 
the use of specialized hardware, that at the moment is not part of the CHIME baseline.  
The list of possible on-board applications has been selected with the aim of exploiting at most the 
capability of the CHIME sensor, e.g., high spatial and spectral resolution. Two main criteria have 
been set in order to ensure that the selected application is useful for the users’ community: 

o Early detection: detection on board of a phenomenon (i.e., forest fire) and the immediate 
transmission to ground of the characteristics of the observed phenomenon. In this case, the 
impact on satellite operation and system is considerable, since an appropriate data chain needs 
to be established (e.g., in order to overcome the limited in time visibility of ground stations, 
a Laser Communication Terminal is needed to transmit data to a geo-synchronous satellite 
optical receiver). 

o Mission extension: use of on-board AI for processing data acquired in areas that are not 
included in the mission profile, e.g., open ocean, polar regions. In the latter case, the impact 
on the satellite operation and system is limited, since only the observables are downloaded to 
ground in case of an event detection, with minimal impact on the data chain. 

Table 1 shows the list of possible applications that has been taken into account for the preliminary 
study. 
 
 Domain Application Task 

IM 1 Industrial Monitoring Dust event AOD (Aerosol Optical Depth) 
Regression map 

IM 2 Industrial Monitoring Mine tailing 

Segmentation map of distinct secondary 
iron mineral (Hematite, Jarosite, 
Goethite) or segmentation map of 
presence of secondary iron mineral in 
general 

IM 3 Industrial Monitoring Hazardous chemical 
compounds 

Segmentation of high concentration 
of  Cu, Pb, and As in the ground 

ME 1 Maritime 
environment 

Coastal / inland water 
pollution Chlorophyll Regression map 

ME 2 Maritime 
environment Oil Spill Segmentation of oil spill 

ME 3 Maritime 
environment Plastic in Ocean Segmentation of presence of macro 

plastic in ocean 

AGE Atmospheric and 
gaseous emission Methane leak detection 

Segmentation of methane plume 
(classification of presence of a methane 
plume) 

Table 1 - List of Applications for AI processing on-board 
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The applications are separated in three main domains: Industrial Monitoring, Maritime environment 
and Atmospheric and Gaseous emission. For each domain, the most interesting and promising 
applications have been pre-selected: 

• Industrial monitoring: Dust events. Fast response to environmental events. 
• Industrial monitoring: Mine tailing. Hyperspectral data may be useful in monitoring 

low-concentration contaminants. Fast response to increased pollution. 
• Industrial monitoring: Hazardous chemical compounds. Mapping of high 

concentration of Cu, Pb, and As in the ground. 
•  Maritime environment: Coastal/Inland water pollution. Fast response to 

environmental changes (warning systems). Monitoring and prediction of 
environmental changes, e.g., algae grow. 

• Maritime environment: Oil spill. Fast response to environmental events. 
Quantification of oil spills. 

• Maritime environment: Plastic in ocean. Fast response to environmental events. 
Monitoring the trajectory of plastic islands (temporal). Classification of plastic 
islands. 

• Atmosphere and gaseous emission: Methane leak detection. Fast localization of 
methane leaks (hence fast reduction of emission). 

Nevertheless, the implementation of AI on board will present additional technological and operational 
challenges that need to be taken into account. In order to take these challenges into account, a list of 
criteria has been set with the aim of retaining only one application for further investigations: 

I. Availability of training data and ground truth data. The availability of training data is key for 
the implementation of data processing based on AI. The data (airborne or spaceborne) shall 
be as much as possible representative of the sensor, in this case CHIME. 

II. Ease of annotation of training data. In case the training data are not labelled, this needs to be 
done manually. In some cases, this task can be really time consuming, hindering the 
usefulness of the data. 

III. Training data re-sampling in order to obtain CHIME-like acquisitions. Very often the training 
data need to be re-sampled in order to match the spatial and spectral sampling of the sensor. 

IV. Algorithm Robustness: it implies here the estimation of behavior of an algorithm that is 
trained on data coming from ground-processed data sources (e.g., Level-1/2 data) and that 
shall nevertheless operate on-board on instrument acquisitions that will not have the same 
data quality (i.e., raw data uncalibrated and uncorrected spectrally / spatially / 
radiometrically). Ground corrections that are mainly affecting the algorithm robustness are 
atmospheric effects and sensor noise compensation. 

V. Operational constraints, i.e., revisit time. For some applications, revisit time and other 
operational constraints could be a key factor (see Section 1). 

The retained application will be possibly implemented in a space representative hardware and will be 
further evaluated in terms of precision and data complexity. At the time of writing, the selection task 
is ongoing. 
 
 
4 CONCLUSIONS 
 
In this paper we reported the technological and operational challenges that the CHIME Project is 
facing for making use of AI-powered data management on board. 
Intelligence and autonomy on board is provided by means of Machine Learning-based cloud detection 
and selective compression in order to reduce the unprecedented data volume and to maximize the 
science return. The on-board inference of a DNN poses several risks and challenges, due to the 
amount of memory and computational power required. Moreover, since the CHIME data chain 
requires real-time processing, also the inference time is a key driver. The adoption of a DNN may 
then require the use of specialized HW, that is not present on CHIME. 
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A good compromise is to use a different ML model, Support Vector Machine, that provides a good 
compromise between precision and computational complexity. We showed that SVM provides 
slightly better performances in terms of precision compared to a threshold approach, despite the fact 
that the training data base was quite limited. However, a big advantage of ML is that the model can 
be greatly improved, also during flight, as soon as more images are (or will be) available. 
In the second part of the paper, we reported the results of the preliminary study about on-board AI 
enhancement. An exhaustive list of possible applications has been compiled, and the selection criteria 
have been set. One of the bigger challenges for the AI on-board enhancement is the availability of 
training data sets, and moreover the fact that the AI algorithm on board will process raw uncalibrated 
data, whilst most of the training data sets available are ground-processed calibrated data. 
The retained application will be further evaluated in terms of precision and data complexity. It is 
likely that the selected application will require additional specialized HW to run the algorithm. In this 
case several options are present nowadays on the market, either COTS AI accelerators or radiation 
tolerant FPGAs with AI inference capabilities. The conclusion of the feasibility study will be 
presented in a following paper. 
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