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Photon transport is necessary to accurately
model deflection scenarios using x-ray deposition

= |nertial confinement fusion (ICF) anc
share some commonalities anc

- Both have large length, density, a

= |CF codes discretize i

— Zones have ¢
— /.///
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The transport equation describes the motion of
photons includin ‘%lnteractlons with moving matter
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= This is the Boltzmann equation written in terms of Intensity
- I has units of Energy/(Length?-Time-Steradian)

= Material motion corrections (MMC) need to be included
« Emission isn’t isotropic, absorption is angle dependent

« There are many O(v/c) MMC approximations; also many numerical
simplifications are employed, some inaccurate

= Radiation exchanges energy and momentum with matter
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The two common numerical methods for
transport simulations are IMC and S

Implicit Monte Carlo (IMC) simulates radiation by computational particles with
randomly selected emission positions and directions

Emit, scatter, track, and absorb “fake” photons

“‘implicit” refers to a numerical extrapolation in time of the matter temperature used in emission
Allows accurate simulation of scattering and Doppler shifts

— Energy-angle correlation in Compton scattering can be simulated

Use of random numbers causes statistical noise ~ N,rices /2 in the results

— Reducing the slowly-declining noise leads to long simulation times

— Discretization errors in thermal emission, both temperature and emission location, require small Ax and At
— Stimulated Compton is approximated or ignored

Sy or Discrete Ordinates represents [ at fixed angles using finite element basis
functions in each zone

The discrete angles are selected to enable Gauss integration of spherical harmonics
Faster than IMC (>10x in opaque problems)

Fully implicit in emission temperature; smaller spatial discretization error

Can simulate stimulated Compton

The use of discrete angles makes anisotropic scattering approximate and can lead to simulation
artifacts
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Computational artifacts of IMC and S
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= |MC simulation of radiation flux in an
iluminated asteroid shows statistical noise

= The electron and ion conduction flux also
shows noise, seeded by the IMC through its
effect on the electron temperature
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Simulation with an isotropic point source in an
absorbing non-scattering medium

= [MC simulation (top) shows statistical noise

= Sy simulation shows ray effects
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Flux-limited Diffusion is a quick but very
approximate transport simulation technique

= Averaging the transport equation over angle plus an ansatz for the flux
results in diffusion equatlon / Material motion correction terms
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ot
Here E = —%/ d€2! is the radiation energy density (Energy/Length3) and
47
C
i — & VE s the radiation flux (Energy/Length?-Time)
(00 +05) » This expression for F is an approximation

= Diffusion can’t model angular information — no shadows

= Diffusion is accurate when radiation is isotropic AND gradients in E are
small

« Ad hoc flux limiter £ in [0,1] needed to suppress superluminal energy flow (F > ¢ AE)
when o is small

= For heat conduction in electrons and ions, which typically have small flux, a
similar diffusion approximation is accurate
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The Multigroup approximation is used to express
frequency dependence of o and I (or E)

We pick O(10)-(100) fixed values of v; each range is called a “group”
« Group bounds are constant in time and space in a simulation
- We solve one transport or diffusion equation per group

« Scattering and absorption-reemission couple the groups and the per-group
equations

— This requires iteration in Sy and FLD

SiO, opacity p = 2.6565’7—3, T=1723x107°

(P

Lines can be

— « Opacities are constant in each

— oo group during a time step

« Recalculated in each group at
the beginning of the time step
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We are using IMC in our deflection calculations
because they contain vacuum and point sources

= Diffusion has poor accuracy in vacuum
« It also can’t simulate the directionality of a point source

= S\ suffers from ray effects in vacuum
« Can’t accurately model strongly peaked scattering like

Compton
= IMC can simulate point and ray sources

« We have to incur and mitigate the drawbacks:
— Statistical noise

. We must use lots of
— Long runtimes particles and processors

— Use lots of zones and time steps
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1D simulations simulate surface absorption,
reemission, and momentum transfer

1 sq. cm chunk ~ 60 cm deep
» Source equivalent to 1 kiloton 85 m away
» Spectrum = 1 keV Planckian
» 200 groups in [3 x 103, 1000] keV log-spaced
* Runto~1e-4 sec
« Atin[10-76, 109 sec
« 2000 zones with Ax in [10°,.4] cm
* 108 computational photons
* Materials = SiO2, Fe, H,0O, Fosterite
« Simulations take ~ 1 Day on 144 2.1 MHz procs :
« Hydrodynamics is Lagrangian 68

Finely zoned asteroid material

» Mesh moves with the material

Ingoing shock

|

Energy escaping through asteroid surface

Ejected material
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Computational photons
are created moving
parallel on vacuum face

1 large vacuum zone
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2D simulations provide more realistic exploration
of deposition as a function of angle

Source photons
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The computational photons have exact positions on a spherical shell
The jaggedness is an artifact of the coarse vacuum zoning

R (x1073)

Zz (x10°3)

Y2 of 35 m asteroid on an axisymmetric mesh
Source is 1 kiloton, 85 m from surface

« Spectrum = 1 keV Planckian
200 groups in [3 x 10-3, 1000] keV log-spaced
20719 zones; sizes in [10%, 100] cm
108 computational photons
Materials = SiO2, Fe, H,O, Forsterite
Simulations take ~ 1 Week on 144 2.1 MHz procs
Hydrodynamics is Lagrangian

* Mesh moves with the material

Lawrence Livermore National Laboratory

10/13
LLNL-PRES-821466 LLL




Radiation hydrodynamics simulations using IMC
will contribute to asteroid deflection modeling

= We are currently running radiation hydrodynamics
calculations in 1 and 2D
« These expensive calculations model absorption and
reemission, shock physics, and asteroid momentum

= These simulations allow us to characterize energy
deposition with relevant physics

= WWe are investigating whether we can use that
deposition in hydro-only calculations and still obtain
accurate results for momentum coupling

« These simulations ignore radiation transport but are much
faster
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A derivation of FLD with MMC

0E;, OF, y - Energy conservation in lab frame: V, 7%, = g%
e or; S UtzFF’i with ¢2 = 6% + vigie, g% = coqaT?* — co, Er and
gk = —%atF}& [See [2], Eqgs.(6.31)—(6.38)]
- Vi A ; : 10F
2) g B+ 262 FF” ~ Er since we will drop c ot  Express lab frame radiation
Fri= Fri+vEp +v;Pr;; +O(2) quantities in fluid frame to O(v/c) via
’ ’ - & Lorentz transformation [2] Eq.(6.30)

: 1 . 1 -

4 anisotropic
G = _pel 9FF _p. 1 9EF  Flux ansatz in fluid frame and afF -+
30t 0T 301 92i_y with £ e [0,1] the flux limiter, used in 2% term
5) Fr, = —Ci OF Inconsistent ! g
{ 30 O Flux ansatz in fluid frame without the flux

- . . V;
limiter, used in UtZFF,z’ term

Steps 1-5 finally yield the standard form of the diffusion equation with MMC
DE 0 1 OF 4 81),6- Eq.(11.9) in [2],

— . i _E — coaT* — co E :
Dt 9z, 30,0z 3 9z, O T@ Eq.(7.18) in [6]
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