An Overview of Numerical Radiation Transport Techniques in Asteroid Deflection Modeling

Planetary Defense Conference 2021

April 28, 2021 Vienna, Austria

Lawrence Livermore National Laboratory

P. O. Box 808, Livermore, CA 94551

LLNL-PRES-821466

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

Photon transport is necessary to accurately model deflection scenarios using x-ray deposition

- Inertial confinement fusion (ICF) and asteroid simulations share some commonalities and challenges
 Both model things support
 - Both have large length, density, and opacity scales

- Both model round things suspended in vacuum hit by x-rays
- We can use the same code for both

- ICF codes discretize in space and time
 - Zones have ρ , T, P, radiation intensity, etc.
 - Energy deposition done by a radiation transport method
 - Hydrodynamic motion and shocks handled by a hydro method
 - Radiation and matter are coupled by thermal emission from material and electron and ion conduction
- Transport dominates the simulation run time
 - We face tradeoffs in the radiation methods between speed and accuracy

- This is the Boltzmann equation written in terms of Intensity
 - I has units of Energy/(Length²-Time-Steradian)
- Material motion corrections (MMC) need to be included
 - Emission isn't isotropic, absorption is angle dependent
 - There are many O(v/c) MMC approximations; also many numerical simplifications are employed, some inaccurate
- Radiation exchanges energy and momentum with matter

The two common numerical methods for transport simulations are IMC and S_N

- Implicit Monte Carlo (IMC) simulates radiation by computational particles with randomly selected emission positions and directions
 - Emit, scatter, track, and absorb "fake" photons
 - "implicit" refers to a numerical extrapolation in time of the matter temperature used in emission
 - Allows accurate simulation of scattering and Doppler shifts
 - Energy-angle correlation in Compton scattering can be simulated
 - Use of random numbers causes statistical noise ~ N_{particles}-1/2 in the results
 - Reducing the slowly-declining noise leads to long simulation times
 - Discretization errors in thermal emission, both temperature and emission location, require small Δx and Δt
 - Stimulated Compton is approximated or ignored
- S_N or Discrete Ordinates represents *I* at fixed angles using finite element basis functions in each zone
 - The discrete angles are selected to enable Gauss integration of spherical harmonics
 - Faster than IMC (>10x in opaque problems)
 - Fully implicit in emission temperature; smaller spatial discretization error
 - Can simulate stimulated Compton
 - The use of discrete angles makes anisotropic scattering approximate and can lead to simulation
 artifacts

Computational artifacts of IMC and S_N

- IMC simulation of radiation flux in an illuminated asteroid shows statistical noise
- The electron and ion conduction flux also shows noise, seeded by the IMC through its effect on the electron temperature

Simulation with an isotropic point source in an absorbing non-scattering medium

- IMC simulation (top) shows statistical noise
- S_N simulation shows ray effects

Flux-limited Diffusion is a quick but very approximate transport simulation technique

Averaging the transport equation over angle plus an ansatz for the flux results in diffusion equation Material motion correction terms

$$\frac{\partial E}{\partial t} + \nabla \cdot \left[-\mathcal{L}F\right] + \frac{4}{3} \nabla \cdot \left(Ev\right) + \frac{1}{3}v \cdot \nabla E = c\sigma aT^4 - c\sigma_a E$$

Here $E = -\frac{1}{c} \int_{4\pi} d\Omega I$ is the radiation energy density (Energy/Length³) and
 $F = -\frac{c}{3(\sigma_a + \sigma_s)} \nabla E$ is the radiation flux (Energy/Length²-Time)

- Diffusion can't model angular information no shadows
- Diffusion is accurate when radiation is isotropic AND gradients in E are small
 - Ad hoc flux limiter \mathcal{L} in [0,1] needed to suppress superluminal energy flow (F > c ΔE) when σ is small
- For heat conduction in electrons and ions, which typically have small flux, a similar diffusion approximation is accurate

The Multigroup approximation is used to express frequency dependence of σ and I (or E)

- We pick O(10)-(100) fixed values of v; each range is called a "group"
 - Group bounds are constant in time and space in a simulation
 - We solve one transport or diffusion equation per group
 - Scattering and absorption-reemission couple the groups and the per-group equations
 - This requires iteration in S_{N} and FLD

- Opacities are constant in each group during a time step
 - Recalculated in each group at the beginning of the time step to account for changes in ρ and T

Lawrence Livermore National Laboratory

We are using IMC in our deflection calculations because they contain vacuum and point sources

- Diffusion has poor accuracy in vacuum
 - It also can't simulate the directionality of a point source
- S_N suffers from ray effects in vacuum
 - Can't accurately model strongly peaked scattering like Compton
- IMC can simulate point and ray sources
 - We have to incur and mitigate the drawbacks:
 - Statistical noise
 - Long runtimes
 - Use lots of zones and time steps

We must use lots of particles and processors

1D simulations simulate surface absorption, reemission, and momentum transfer

- 1 sq. cm chunk ~ 60 cm deep
- Source equivalent to 1 kiloton 85 m away
 - Spectrum = 1 keV Planckian
- 200 groups in [3 x 10⁻³, 1000] keV log-spaced
- Run to ~ 1e-4 sec
 - ∆t in [10⁻¹⁶, 10⁻⁹] sec
- 2000 zones with Δx in [10⁻⁵,.4] cm
- 10⁶ computational photons
- Materials = SiO2, Fe, H₂O, Fosterite
- Simulations take ~ 1 Day on 144 2.1 MHz procs
- Hydrodynamics is Lagrangian
 - Mesh moves with the material

Lawrence Livermore National Laboratory

2D simulations provide more realistic exploration of deposition as a function of angle

Source photons

- The computational photons have exact positions on a spherical shell
- The jaggedness is an artifact of the coarse vacuum zoning

- 1/2 of 35 m asteroid on an axisymmetric mesh
- Source is 1 kiloton, 85 m from surface
 - Spectrum = 1 keV Planckian
- 200 groups in [3 x 10⁻³, 1000] keV log-spaced
- 20719 zones; sizes in [10⁻⁶, 100] cm
- 10⁸ computational photons
- Materials = SiO2, Fe, H₂O, Forsterite
- Simulations take ~ 1 Week on 144 2.1 MHz procs
- Hydrodynamics is Lagrangian
 - · Mesh moves with the material

Radiation hydrodynamics simulations using IMC will contribute to asteroid deflection modeling

- We are currently running radiation hydrodynamics calculations in 1 and 2D
 - These expensive calculations model absorption and reemission, shock physics, and asteroid momentum
- These simulations allow us to characterize energy deposition with relevant physics
- We are investigating whether we can use that deposition in hydro-only calculations and still obtain accurate results for momentum coupling
 - These simulations ignore radiation transport but are much faster

A derivation of FLD with MMC

1)
$$\frac{\partial E_L}{\partial t} + \frac{\partial F_{L,i}}{\partial x_i} = c\sigma_a a T^4 - c\sigma_a E_F - \sigma_t \frac{v_i}{c} F_{F,i}$$
Energy conservation in lab frame: $\nabla_a T_{rad}^{a0} = g_F^{a0}$
with $g_L^0 = g_F^0 + v_i g_F^i$, $g_F^0 = c\sigma_a a T^4 - c\sigma_a E_F$ and
 $g_F^0 = -\frac{1}{c} \sigma_t F_F^i$ [See [2], Eqs.(6.31)—(6.38)]
 $E_L = E_F + 2 \frac{v_i}{c^2} F_{F,i} \approx E_F$ since we will drop $\frac{1}{c} \frac{\partial F_F}{\partial t}$
 $F_{L,i} = F_{F,i} + v_i E_F + v_j P_{F,ij} + O(\frac{v}{c})$
Express lab frame radiation
quantities in fluid frame to O(v/c) via
Lorentz transformation [2] Eq.(6.30)
 $P_F = \frac{1}{c} \int_{4\pi} I_F \Omega_i \Omega_j \ d\Omega \approx \frac{1}{3} E_F \delta_{ij}$ assuming $I_F = \frac{1}{4\pi} (cE_F + \Omega_F \cdot F_F)$ $|_F^{is}$ weakly
anisotropic
4) $F_F = -\mathcal{L}c \frac{1}{3\sigma_t} \frac{\partial E_F}{\partial x_{F,i}} \approx -\mathcal{L}c \frac{1}{3\sigma_t} \frac{\partial E_F}{\partial x_i}$
Flux ansatz in fluid frame and $\frac{\partial}{\partial x_{F,i}} = \frac{\partial}{\partial x_i} + \frac{v_i}{\partial x_i}$
with $\mathcal{L} \in [0, 1]$ the flux limiter, used in $\frac{\partial F_F}{\partial x_i}$ term
5) $F_{F,i} = -c \frac{1}{3\sigma} \frac{\partial E}{\partial x_i}$
Flux ansatz in fluid frame without the flux
limiter, used in $\sigma_t \frac{v_i}{c} F_{F,i}$ term

Steps 1-5 finally yield the standard form of the diffusion equation with MMC

$$\frac{DE}{Dt} - \frac{\partial}{\partial x_i} \mathcal{L} \frac{1}{3\sigma_t} \frac{\partial E}{\partial x_i} + \frac{4}{3} E \frac{\partial v_i}{\partial x_i} = c\sigma a T^4 - c\sigma_a E$$

Lawrence Livermore National Laboratory

References

- G.C. Pomraning, *Equations of Radiation Hydrodynamics*, in: D. ter Harr (Ed.), International Series of Monographs in Natural Philosophy, vol. 54, Pergamon, New York, 1973.
- L. Castor, *Radiation Hydrodynamics*, Cambridge University Press, New York, 2007
- Mihalas and Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, Oxford, 1984.
- J. R. Buchler, Radiation Transfer in the Fluid Frame, JQSRT 30 No.5 (1983) 395–407.
- **[5]** R. B. Lowrie, D. Mihalas, J. E. Morel, Comoving-frame radiation transport for nonrelativistic fluid velocities, JQSRT 69 (2001) 291–304.
- **[6]** R.L. Bowers and J. R. Wilson, *Numerical Modeling in Applied Physics and Astrophysics*, Jones and Bartlett, Boston, 1991.

