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ABSTRACT

This paper describes two methods of generating artificial infrared images based on visual-light
spectrum images. The methods were developed as part of the FOK project – rocket guidance,
navigation and control research and development platform of the Students’ Space Association at
the Warsaw University of Technology. The current mission goal of the FOK rocket is to guide the
rocket towards ground-based visible or infrared markers. The infrared image generation methods
were developed to facilitate software-in-the-loop tests of infrared vision-based navigation during
which the rocket’s flight is simulated using an in-house developed rocket flight simulation soft-
ware SKA RFS. During the simulated flight, artificial infrared images are generated and fed into
image recognition algorithms, and then the information about the detected target is fed into the
rocket’s control algorithm. Two methods of artificial infrared image generation, based on available
visible-light spectrum images, are described within the paper: one based on a linear correlation
between red, green, blue and infrared channels, and the second one based on neural networks.

1 INTRODUCTION

Visual navigation is a cornerstone of many modern navigation systems, from computer mice sensors
through cars, guided missiles, spacecraft proximity operations and landers. In particular, infrared-
based guidance is an essential feature of guided missiles [1]. Since 2017 the Students’ Space Asso-
ciation at the Warsaw University of Technology has been developing the FOK rocket - a guidance,
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navigation and control research and development platform [2]. Currently, the team is developing a
vision-based navigation system composed of visible-light and infrared seekers with the goal of guid-
ing the rocket towards ground-based visible or infrared markers [3].
As part of the project, the team works on software-in-the-loop tests of developed GNC algorithms.
The tests are conducted within the SKA RFS software - an in-house developed tool for simulating a
variety of sounding rockets [4]. It is a 6 degrees of freedom flight simulation tool able to simulate
multi-staged rockets, equipped with multiple engines, multiple parachutes, and aerodynamic control
systems. It also allows for conducting simulations of a video stream from the rocket-mounted camera.
As the next iteration of the FOK project aims to use an infrared camera, the team faced the challenge
of simulating infrared camera images within the RFS software to test the developed vision navigation
algorithms.
This paper presents techniques for generating artificial infrared images for visual navigation simula-
tion. Artificial images are generated based on source images taken in the visible-light spectrum. Two
methods for artificial image generation are investigated: the first using a simple correlation between
the visible and infrared images, and the second utilising neural networks.
The correlation method compares a set of reference infrared and visible-light spectrum image pairs
of the same scenes to determine a correlation between red, green and blue channels and an infrared
channel. Several correlation functions are used: simple linear correlation between single visible and
infrared pixel intensities and linear correlations of pixel grids of various sizes. The correlation coef-
ficients are determined using the least squares method. Although an assumption of linear correlation
between red, green, blue and infrared channels might seem naive, this approach was investigated due
to its simplicity.
To implement neural network models capable of generating artificial infrared images, research on
existing solutions in similar cases was carried out. The research focused on methods that use paired
images for training. Papers found can be divided into two types:
– methods of translating images from outside the visible into the visible spectrum,
– translation of images from the visible to images outside the visible spectrum.
The first category example solution is the SAR-to-Optical Image (SAR - Synthetic Aperture Radar)
method [5], which was implemented using modified conditional generative adversarial network (cGAN),
whose generator is based on the U-net architecture [6]. 10,000 pairs of SAR/optical images were used
for training while 3,000 pairs were used for testing cGAN model.
Solutions belonging to the second category (which also includes the subject of the presented work)
include methods for the generation of NIR images from RGB (visual spectrum), which were trained
on one of the most popular datasets in this field – Sentinel-2 [7]. These solutions also use mostly
cGAN networks with generators based on the U-net structure [8], [9].
Despite the great similarity of these methods to the issue described in this work, it is worth mentioning
two major differences:
– different spectrum of infrared radiation (near infrared vs thermal infrared),
– different sets of training data (Sentinel-2 vs smaller - own dataset).
The most commonly used solutions for the problem of translating images between different spectra
(which simultaneously use paired datasets for training) are those based on modified GAN network
versions [10] (cGAN, cycleGAN, pix2pix).
Solutions providing source code for implemented models allow to easily repeat the presented works
or adapt them to one’s needs. Unfortunately, only a small part of analyzed papers provide such a
feature. Therefore, further work focused on ready-to-use neural cGAN-based network models that
could be easily used for training and fine-tuning on own dataset. These are described in detail in
Neural network section. A detailed survey of the most important methods and solutions for Image-
to-Image Translation can be found in [11].
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The source material, pairs of visible and infrared images of the same scene, were acquired using an
integrated infrared-visible spectrum camera mounted on an unmanned aerial vehicle (UAV). Images
were acquired over relevant scenes – fields, forests, heath – landscapes usually encountered during
the prospective flight of the FOK rocket.
The paper concludes with a detailed comparison of the developed methods both in terms of quantita-
tive metrics describing the similarity of artificially generated images and original infrared images, as
well as in terms of subjective perception of the generated images.

2 FOK PROJECT

The FOK project was started in 2017 by the Students’ Space Association at the Warsaw University
of Technology. Its goal was to build a small rocket which would serve as a testbed for control sys-
tems and algorithms development [2]. The aerodynamically-controlled rocket has 4 canards and is
propelled by a solid rocket motor which enables it to reach velocities up to Mach 0.6. It is 1.2 metres
long and weighs just shy of 5 kilograms. Its fuselage is made of aluminium while the nose cone
is made of glass fibre composite due to radio signals permittivity. The construction was iteratively
improved thanks to 4 flights (see Fig. 1) whose main goal was to gather data on all subsystems’
performance, as well as to perform aerodynamic model identification [12].

Figure 1: FOK during one of its launches.

The original design of FOK assumed utilisation of inertial and satellite sensors to execute its missions.
The latest version of the rocket, FOK 2, is additionally equipped with a seeker housing a camera
placed at the top of the nose cone (see Fig. 2). Its primary objective is to enable the rocket to guide
itself towards a ground-based target using proportional navigation algorithms [3], [13], [14]. Two
types of imaging nose cones were designed – one with a regular, visible-light-based camera; and
another one which will carry a long-wave infrared (LWIR) camera to enable imaging in the infrared
spectrum. A series of tests was performed to establish an optimal optical setup of the infrared system
[15].
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Figure 2: FOK 2 with the new seeker.

3 SOURCE MATERIAL AND PREPROCESSING

The source material used in this research was a set of pairs of infrared and visible-light spectrum
images of the same scene. The images were acquired using a DJI Zenmuse XT 2 combined infrared-
visible light spectrum camera [16] mounted on Matrice 210 V2 RTK UAV [17]. Images were acquired
during several flights, from altitudes up to 120 metres, over grass, buildings, heath, sand and forest
areas. Table 1 presents the specifications of Zenmuse XT 2 cameras, while Fig. 3 presents raw images
from thermal and infrared cameras.

Table 1: Specification of Zenmuse XT 2 thermal and visible cameras. Source: [16].

Thermal camera Visible camera

sensor Uncooled VOx Microbolometer CMOS, 1/1.7”

resolution 640×512 4000×3000

pixel pitch 17 µm 1.9 µm (estimated)

spectral band 7.5–13.5 µm –

focal length 13mm 8mm

field of view 45◦×37◦ 57.12◦×42.44◦

As the field of view of the visible camera was larger than that of the thermal camera, a correlation
procedure was performed. The visible light spectrum images were transformed to match the thermal
images’ resolution and field of view. The process accounted for radial distortions (as the original
visible images seemed not to be properly calibrated), scaling, rotation, translation and cropping. Fig. 4
presents the preprocessed visible light spectrum image, which matches the thermal infrared image
(compare it with Fig. 3).
Furthermore, in order to allow for comparison of data acquired at different conditions – particularly
thermal infrared images acquired at different ambient temperatures – it was decided to scale the data
stored in each image’s pixels to the 0-1 range. For visible light spectrum images, the scaled pixel
intensity (for red, green and blue channels) was obtained by dividing the raw pixel intensity (in this
case stored as an unsigned 8-bit integer) by 255 (see Eq. 1). For thermal infrared images, first, an
aggregated histogram of infrared intensity values was determined (see Fig. 5). Then, based on the
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(a) Visible light spectrum image. (b) Thermal infrared image.

Figure 3: Raw images from Zenmuse XT 2 cameras.

Figure 4: Preprocessed visible light spectrum image from Zenmuse XT 2 camera.

histogram, the 1.5 interquartile range method was used to determine the minimum and maximum
bounding values (IminBound and ImaxBound; those are commonly used to identify outliers). Finally, the
scaled pixel intensity was obtained by subtracting the minimum bounding value from the raw pixel
intensity (stored as an unsigned 16-bit integer) and dividing the obtained difference by the difference
between the maximum and minimum bounding values (see Eq. 2).

R =
Ruint8

255
, G =

Guint8

255
, B =

Buint8

255
(1)

I =
Iuint16 − IminBound

ImaxBound − IminBound

(2)

Out of every parent image, four 256 by 256 square images of random, uniformly distributed coordi-
nates have been extracted. This has been done due to the limitations of neural networks of choice.
The resulting dataset (5016 image pairs) has been split into training (3511), validation (1003) and test
(502) sets. The correlation method used both training and validation sets to calculate its coefficients.
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(a) Entire range of the histogram. (b) Histogram zoom-in.

Figure 5: Aggregated infrared images histogram. Minimum and maximum bounding values and outliers labelled.

4 CORRELATION

The first investigated method of generating artificial infrared images is based on linear correlation
between visual and infrared-light spectrum images of the same scene. As each pixel in the visual-
light spectrum image is a combination of three visual light channels: red, green and blue (RGB); and
in the infrared image, each pixel has single value of registered wavelength intensity; it is possible to
formulate an equation which linearly correlates the RGB channels intensities to infrared intensity:

Ii,j = α ·Ri,j + β ·Gi,j + γ ·Bi,j, (3)

where:
Ii,j — normalized infrared intensity of the (i, j) pixel,
Ri,j — normalized red wavelength intensity of the (i, j) pixel,
Gi,j — normalized green wavelength intensity of the (i, j) pixel,
Bi,j — normalized blue wavelength intensity of the (i, j) pixel,
α, β, γ — correlation parameters.
Considering the entire image or a set of images, the same equation can be formulated for each pixel,
composing a system of linear equations which can be written in a matrix form as follows:

AX = I (4)

where:

A =


R11 G11 B11

R12 G12 B12

R13 G13 B13
...

...
...

 , X =

αβ
γ

 , I =


I11
I12
I13
...

 . (5)

Three correlation parameters α, β, and γ, which describe the relations between the intensities of
RGB and infrared channels are being calculated by the least square method. After calculating those
parameters, it is possible to generate an artificial infrared image from an arbitrary RGB image by
multiplying each pixel’s RGB channels’ intensities of the source image by the respective correlation
parameters and summing up the products. The result is the infrared intensity of the artificial image
pixel.
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The above method (from now on called the 1-to-1 correlation) can be expanded by incorporating more
correlation coefficients. In particular, one can deduce the intensity of the infrared channel not solely
based on the RGB channels intensities of the corresponding pixel but based on both the corresponding
pixel and its neighbours. In this case, the intensity of the artificial infrared pixel is determined based
on a 3 by 3 grid of pixels centred on the corresponding RGB pixel – this method is called the 9-to-1
correlation.
As a result, there are 27 parameters describing the relation between visual and infrared images, 9 for
the green channel, 9 for the red channel and 9 for the blue channel. It is worth noting that because
of the 3 by 3 grid, correlation cannot be determined for the pixels on the edges of the image. As a
result, images reconstructed by this method have a smaller resolution than the source images from
which they were created. For instance, from a 256x256 visual-light image, a 254x254 infrared image
is created.
The equation describing the correlation in the 9-to-1 method for a single (i, j) pixel of the infrared
image is:

Ii,j =
2∑

k=0

2∑
l=0

(αi+k,j+l ·Ri+k,j+l + βi+k,j+l ·Gi+k,j+l + γi+k,j+l ·Bi+k,j+l) (6)

Similar to 1-to-1 method, it is also very convenient to use the matrix form. Equation 4 still represents
the corresponding system of linear equations, only the A and X matrices change:

A =
[
R G B

]
, (7)

R =

R11 R12 R13 R21 R22 R23 R31 R32 R33

R12 R13 R14 R22 R23 R24 R32 R33 R34
...

...
...

...
...

...
...

...
...

 , X =



α1
...
α9

β1
...
β9

γ1
...
γ9


, I =


I22
I23
I24
...

 . (8)

Matrices G and B are analogous to R.
For both methods, the parameters were calculated based on 4514 images. Obtained correlation pa-
rameters for the 1-to-1 and 9-to-1 methods were presented in Equations 9.

X1to1 =

 1.750
0.236
−1.033

 , α9to1 =

 0.680 −0.089 0.853
−0.299 −0.973 −0.317
0.991 −0.071 1.112

 ,

β9to1 =

 0.789 −0.157 0.511
−0.302 −0.872 −0.451
0.544 −0.235 0.329

 , γ9to1 =

−1.314 0.322 −1.201
0.671 1.873 0.842
−1.380 0.382 −1.279

 .

(9)

5 NEURAL NETWORK

Two variants of the pix2pix architecture were selected for training on custom dataset and further
analysis.
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Pix2pix [18] is a conditional generative adversarial network (cGAN). Such networks consist of a
generator that is trained to generate images and a discriminator that is trained to distinguish between
real and fake images. Pix2pix is a very flexible network that can be used to conduct versatile image
manipulation tasks such as: translation between image styles, translation of label maps into images,
colourization of images, generation of images from edges and filling missing parts of images, to name
a few. Pix2pix with its default training settings was used, that is with a patch (70× 70 discriminator)
and L1+cGAN loss function. Pix2pix network has been trained with 2 different batch sizes.
Pix2pixHD [19] is an evolution of pix2pix network that allows for generating images with finer detail
and of higher resolutions. Its main use is to translate label maps to images but it also is capable of
translating one style of image into another. Its downside compared to pix2pix is a need for greater
resources required to train it.
Table 2 presents details of training parameters performed on selected architectures.

Table 2: Networks’ training parameters

Network pix2pix pix2pix-b25 pix2pixHD

No. training images 3511 3511 3511

No. validation images 1003 1003 –

No. epochs 200 300 200

Batch size 1 25 1

Epoch time 175 s 115 s 790 s

GPU RTX 3060 Max-Q (6GB) Google Colab Tesla T4 RTX 3060 Max-Q (6GB)

6 RESULTS

To compare the results obtained by various methods, source infrared scaled images and artificially
generated infrared images were converted into temperature ranges assuming that the minimum and
maximum bounding values obtained in Section 3 corresponded to minimum and maximum surface
temperature on the day of data acquisition (14 ◦C and 24 ◦C, respectively), and with the assumption
of simple black body radiation model defined by Planck’s law. This was done to allow comparison
in terms of somewhat meaningful units (in this case degrees Celsius) rather than arbitrary normalized
pixel intensities. It should be noted that the resulting temperature is still considered arbitrary but what
was of interest to the authors is the difference between the temperature on the true infrared image and
the artificially generated images.
Tables 3-6 presents a selection of artificially generated images from each method, along with true in-
frared images, source RGB images and error images (difference between artificially generated image
and source infrared image). Table 7 presents the comparison of temperature error statistics - the data
were determined based on a sample of 502 test images.
Looking at the statistical comparison in Table 7 it can be noted that overall the neural networks
offer smaller errors than the correlation methods. The pix2pix and pix2pixHD yielded the smallest
mean error, followed by the pix2pix-b25, while the correlation methods yielded the largest error,
about four to five times larger than pix2pix and pix2pixHD. The pix2pix-b25 and the correlation
methods had the mean absolute error and the standard deviation about twice that of the pix2pix and
pix2pixHD. It needs to be mentioned that although pix2pix-b25 has managed to achieve smaller errors
than correlation methods, it tends to generate visually unsatisfying results.
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The superiority of the neural networks’ methods in regards to chosen metrics is better visible in
Tables 3-6. Correlation methods struggle to properly assign infrared values to a broad range of objects.
One of its features is edge preservation. This is a direct result of the method’s construction. Edge
preservation can be both an upside, like when processing most man-made objects (image 1 in Table 3,
image 8 in Table 4, images 10 and 11 in Table 5), and a downside, in case of processing of solar
panels or greenhouses (image 2 in Table 3 and images 5 and 6 in Table 4). Chosen neural networks do
not have this property. This leads to generally worse shape reproduction (images 1 and 2 in Table 3,
images 5, 6, 8 in Table 4). Neural networks, however, achieved good results when translating images
of roads.
The major downside of used correlation methods is their general inability to map multiple RGB
colours to one infrared. This can be clearly seen in images 11 and 12 in Table 5 and in the transfor-
mation of images of trees in Table 6.
It is worth mentioning that neural networks can generate artefacts, especially when presented with
types of objects that were underrepresented in the training dataset. In image 1 in Table 3 transformed
rectangular features seem to be translated. In images presenting tracks in the sand (image 4 in Table 3,
image 9 in Table 5, and images 13 and 14 in Table 6) it is visible that neural networks struggled to
translate them faithfully.
Regarding the comparison between 1-to-1 and 9-to-1 (3x3 grid) pixel correlation methods, the latter
provided only tiny improvements. This could be expected as the application of pixel grids is useful
when the signal gradients play a role. In general, the temperature of an object will depend on the
object type (its colour) rather than the gradient of its colour. Therefore, no larger pixel grids (5x5,
7x7 etc.) were investigated.
Concerning computational complexity, it must be noted that the correlation methods were computed
in less than a minute on an average-class PC, while neural networks training took several days and
required access to a cloud computing platform or a high-end GPU.

7 SUMMARY

The paper presented several methods for generating artificial infrared images based on visible light
spectrum images. Although it can be determined that the neural networks-based methods offered
overall better results than correlation methods, they are subject to several important constraints. As
the utilized neural networks must be trained using 256 by 256 images and can only output images of
that size, their output images cannot be directly used while simulating image frames from an infrared
camera of arbitrary resolution. One way to overcome this problem would be to divide visible light
spectrum image corresponding to the simulated infrared camera field of view into tiles appropriate
for the neural network, and then stitch the resulting artificial infrared images back together to form
an image of appropriate size. Another solution would be to develop a new neural network capable of
working on images of the required size; however, this would require retraining of the network each
time the required image’s resolution changes.
This restriction does not apply to the correlation methods as they operate on a pixel-by-pixel basis.
Therefore, each image used either during training or during later application, might be of a different
size. To increase the quality of results offered by the correlation method, one might increase the
number of coefficients used. This might be done, for example, by switching from determining the
correlation between radiation bands (red, green, blue and thermal infrared) to determining the cor-
relation between specific colours and thermal radiation – dividing visible colourspace into a finite
number of distinct colours and assigning a specific value of thermal radiation to each colour.
Neural network architectures selected for training on created dataset transform images of natural ter-
rains with relatively high accuracy. However, they perform worse with images of man-made objects,
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Table 3: Comparison of results from various artificial infrared image generation methods. Part 1/X
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Table 4: Comparison of results from various artificial infrared image generation methods. Part 1/X

No. true corr. 1-to-1 corr. 9-to-1 pix2pix pix2pix-b25 pix2pixHD
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Table 5: Comparison of results from various artificial infrared image generation methods. Part 1/X

No. true corr. 1-to-1 corr. 9-to-1 pix2pix pix2pix-b25 pix2pixHD
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Table 6: Comparison of results from various artificial infrared image generation methods. Part 1/X

No. true corr. 1-to-1 corr. 9-to-1 pix2pix pix2pix-b25 pix2pixHD
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Table 7: Statistical comparison of results from various artificial infrared image generation methods.

correlation 1-to-1 correlation 9-to-1 pix2pix pix2pix-b25 pix2pixHD

Mean error (◦C) -0.46 -0.4 -0.086 0.20 0.11

Mean absolute error (◦C) 1.84 1.78 0.73 1.6 0.69

Standard deviation (◦C) 2.23 2.16 0.99 2.1 0.96

such as buildings and solar panels. This may be due to the relatively small representation of the latter
objects in the dataset. It is probable though, that more refined neural networks would achieve better
results. Another possible solution to address this issue would be to use networks trained on unpaired
datasets. Nevertheless, the main scope of this research remain images of terrain that the rocket flies
above, which is why man-made objects are of lesser concern.
The aim of this paper was not to find a correlation between the visible light spectrum and thermal
radiation – if it existed, it would almost certainly have been found before. The task was to develop an
algorithm that would produce artificial infrared images ”good enough” for prospective application -
simulation of infrared-based rocket guidance. As there are still challenges to overcome and possible
improvements to be made, the research is far from over.
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