
Hardware accelerated onboard image processing for space-based meteor
observation: Concept and Implementation of SpaceMEDAL

Jona Petri(1), Julia Zink(1), Sabine Klinkner (1)

(1)IRS, University of Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart, +49-711-685-63094,
petri@irs.uni-stuttgart.de;klinkner@irs.uni-stuttgart.de

ABSTRACT

The University of Stuttgart’s Institute of Space System is currently developing the CubeSat
Stuttgart Operated University Research Cubesat for Evaluation and Education (SOURCE) in
cooperation with Small Satellite Student Society at the University of Stuttgart (KSat e.V.). The
mission of the three-Unit CubeSat is dedicated to technology demonstration and demise inves-
tigation using a sensor suite for atmospheric and re-entry science. Furthermore, the satellite is
equipped with a meteor observation camera. During an eclipse, this camera is pointed towards
Earth and is continuously taking images in order to observe a meteor. The main advantages
of a space-based meteor observation are the greater coverage as well as weather independence.
However, the downlink capacity of a small satellite, especially a CubeSat, is limited. Thus,
the satellite uses onboard processing of the images to detect meteors. The onboard meteor
detection algorithm called Spaceborne MEteor Detection ALgorithm (SpaceMEDAL) faces two
main challenges: First, SpaceMEDAL must detect faint, short, and fast-moving events while the
background is moving due to the satellite motion. This requires the usage of a new detection
method. SpaceMEDAL is based on the optical flow calculation, a method in image processing
that gives the movement of each pixel between two frames. Here, the second challenge arises:
The optical flow calculations are computationally intensive, but the processing resources on a
CubeSat are limited. This paper presents the novel onboard meteor detection algorithm Space-
MEDAL based on optical flow calculations and its implementation for the CubeSat SOURCE.
Both challenges described above are addressed. First, the concept of the algorithm, the opti-
mization of its parameters, and detection performance are given. The algorithm is based on
optical flow calculations, background determination, and object detection using the OpenCV
library. The detection performance is evaluated by a dedicated simulation to generate test data
and hardware-in-the-loop Testbed. It can be shown, that 78.8 % of all meteors in the test set
can be detected with a low rate of false positive detections (5.3 %). Second, the implementation
on the SOURCE payload computer is given. In order to allow the processing of all images in
a reasonable time with the limited hardware resources, the Field Programmable Gate Array
(FPGA) of the Payload On-Board Computer (PLOC) is used. The most resource intensive
function of the algorithm, the optical flow calculation, is exported to the FPGA. This accele-
rates the function by a factor of 5.2 and the algorithm by a factor of 3. This is possible by
using tools provided by the FPGA manufacturer. All in all, the presented detection algorithm
and its implementation are a crucial part of the SOURCE mission and potential successors.
Furthermore, the implementation of SpaceMEDAL using hardware acceleration have a high
potential to be adapted to other missions requiring onboard processing.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 1



Acronyms

API Application Programming Interface; ArtMESS Artificial Meteorvideo Simulation Soft-
ware; CPU Central Processing Unit; CVB Common Vision Blox; FN False Negative; FP
False Positive; FPGA Field Programmable Gate Array; FSFW Flight Software Framework;
IRS Institute of Space Systems; ISS International Space Station; KSat e.V. Small Satellite
Student Society at the University of Stuttgart; MeSHCam Meteor Observation, Star and
Horizon Tracking Camera; OBC Onboard computer; PCDU Power Control and Distribution
Unit; PERC Planetary Exploration Research Center; PLOC Payload On-Board Computer;
PRIma PR Imager; PUS Packet Utilisation Standard; SOURCE Stuttgart Operated Uni-
versity Research Cubesat for Evaluation and Education; SpaceMEDAL Spaceborne MEteor
Detection ALgorithm; TP True Positive

1 INTRODUCTION

The Institute of Space Systems (IRS) at the University of Stuttgart is currently developing
the CubeSat Stuttgart Operated University Research Cubesat for Evaluation and Education
(SOURCE) in cooperation with Small Satellite Student Society at the University of Stuttgart
(KSat e.V.). The mission of the three-Unit CubeSat (see Figure 1) is dedicated to technology
demonstration and demise investigation using a sensor suite for atmospheric and re-entry science
(see [1]). Currently, the project is in Phase D, the satellite is being built and the launch is
planned for 2023, see Table 1 for more mission details.

Table 1. SOURCE mission facts

Property Value
Orbit Sun-synchronous/ISS orbit
Initial orbit altitude 450 km to 500 km
Mass ∼ 5 kg
Size 30 cm × 10 cm × 10 cm
Mission duration ∼ 1 year
Attitude determination Sun sensors, magnetometer, experimental Startracker
Attitude control Magnetorquer
Pointing accuracy 5°
Power generation 10 solar panels (327 × 80.25 × 1 mm) á 7 cells
Maximum power generation 30 W
Payload data rate per day 100 MB using S-band

The satellite is equipped with two cameras: One camera is called PR Imager (PRIma) and used
to take images for public relation. The second camera is dedicated to meteor observation.
This camera is called Meteor Observation, Star and Horizon Tracking Camera (MeSHCam) (see
Figure 2) and consists of an industrial machine vision camera (GenieNanoM1920 ) equipped
with a Schneider Kreuznach Cinegon 1.4/12 lens. During eclipse (∼ 30 min per ∼ 90 min
orbit), the camera is pointing towards Earth and continuously taking images with 6 fps to
10 fps. Meteors are light phenomena whose exact time and place of occurrence are random.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 2



MeSHCam

Figure 1. Rendering of the SOURCE Satellite.
MeSHCam is located on the right side.

Figure 2. Image of MeSHCam mounted on a
plate for tests in the optical laboratory.

Thus, continuous observation is required. Since this observation concept generates a large
amount of data, which can not be downlinked given the limited capabilities of a CubeSat, the
images need to be processed onboard. Thus, a meteor detection algorithm is needed to detect
meteors in the images and select only those images for downlink.
The algorithm faces two main challenges: First, resources (like power) on a CubeSat are limited.
This limits the available processing power of the Payload On-Board Computer (PLOC) and
the time the algorithm can run due to limited electrical power. Thus, an efficient and fast
implementation is required. Second, the algorithm faces intrinsic challenges associated with
meteor observation in general and with space-based observation in particular: Meteors are a
fast moving (several km s−1), usually faint and short (2 s to 4 s) light phenomena. This makes
them challenging to detect. Nevertheless, several ground-based algorithms exist and are used for
ground-based observations (see [2]). However, these algorithms are not applicable for a space-
based algorithm, since they require a static background. Because the satellite is moving during
observation, the background is moving as well and methods based on a static background do
not work. Thus, we developed a new algorithm for onboard meteor detection called Spaceborne
MEteor Detection ALgorithm (SpaceMEDAL).
In this paper we describe three main parts of the SpaceMEDAL development: First, the concept
of our novel algorithm (see Section 2) is outlined. Next, our approach to testing and optimizing
the algorithm (see Section 3) is presented. This includes data generation for testing, a hardware-
in-the-loop test setup and automatic data evaluation, and algorithm parameter optimization.
Finally, the implementation and acceleration of the algorithm using the Field Programmable
Gate Array (FPGA) of the PLOC is presented (see Section 4).

2 SpaceMEDAL ALGORITHM CONCEPT

The basic idea followed by SpaceMEDAL is that meteors usually move differently than the
background. Hence, the algorithm determines the movement of the whole image scene and
detects features that move at different speeds and directions than the overall scene. The
movement of the image is calculated using Farnebäck’s dense optical flow algorithm (see [3]).
Features of interest are extracted by blob detection. If similarly moving blobs are detected in a

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 3



certain amount of frames, these blobs get classified as a meteor. The algorithm is implemented
in C++ and uses image processing methods of the OpenCV library.

2.1 DETAILED ALGORITHM CONCEPT
The algorithm starts with reading input parameter values from an external configuration file,
the config.cfg file. These input parameters set parameters of SpaceMEDAL, e. g. to define
the properties a detected feature has to show to be classified as a meteor. Furthermore, they
define the settings for preprocessing and optical flow calculations.
Afterwards, the algorithm proceeds to consecutively read in images taken by MeSHCam. The-
reby, two subsequent frames are examined for meteor detection. Both images are preprocessed
by thresholding dark pixels. This means that all pixels below the threshold value are set to
0. Thresholding removes noise, hides out irrelevant regions, and increases the contrast in the
images. Tests showed that preprocessing is an important step to obtain a clear image for blob
detection.
After preprocessing, the dense optical flow between the two frames is determined. The optical
flow gives the displacement in the X and Y direction of each pixel between frames. On basis of
the calculated displacement vectors of each pixel, an angle and magnitude image are derived.
These describe the magnitude and direction of motion (angle) of the whole scene respectively.
The algorithm then calculates the mean and standard deviation of angle and magnitude and
uses these values to determine the main motion of the background.
The next step is to acquire an image that is suitable for blob detection. To do so, the main
motion of the background is masked out in the magnitude of motion image, and the remaining
noise is removed by a median filter. The resulting image shows the magnitude of motion of
non-background regions between two frames.
Finally, the resulting image is converted to a binary image by setting all pixels with a value
above 0 to 255. This highlights all non-background pixels and facilitates blob detection. In this
binary image, the algorithm detects blobs by applying OpenCV ’s cv::SimpleBlobDetector.
Figure 3 shows the image processing steps conducted by the algorithm.
In order to distinguish between blobs caused by elements in the background (e. g. lightning)
and blobs which could possibly be meteors, blobs are filtered by their area and circularity. The
typical area and circularity of blobs caused by meteors could be determined experimentally.
Additionally, the algorithm compares the standard deviation of a blobs intensity to a threshold
value (defined by input parameters). A blobs intensity is determined in the respective prepro-
cessed current frame. If the detected blobs standard deviation is below the threshold, the blob
most likely belongs to the background and is discarded. The remaining blobs are considered
potential meteors and temporarily stored.
Assuming that a meteor has the same movement across multiple frames, each potential meteor’s
movement (direction and speed) is compared to previously detected blobs within a specific frame
range. As soon as the algorithm finds similarly moving blobs in a certain amount of frames,
the detected blob is classified as a meteor. Its properties, such as frame number, blob center
coordinates, and size as well as angle and magnitude are exported to a .csv file.
In the next step, the detection performance of SpaceMEDAL must be evaluated and the para-
meters must be adapted. Thus, in the next section, the generation of test data as well as the
method of parameter optimization is outlined.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 4



(a) Current frame (preprocessed). (b) Next frame (preprocessed).

(c) Optical flow between frames (d) Image for blob detection.

Figure 3. Visualisation of image processing steps of meteor detection algorithm. The white dot
(blob) in the middle of image (d) represents a successful detection of a meteor.

3 SpaceMEDAL ALGORITHM OPTIMIZATION

A crucial step in the SpaceMEDAL development is a proper testing approach, to ensure the
algorithm is working as intended. Furthermore, different algorithm parameters need to be set
and their effect evaluated depending on the imaged scene. This requires a suitable set of test
data. Thus, a Python script to generate a systematic test set was developed (see Section 3.1).
Additionally, a setup in the optical laboratory of IRS was built, to allow testing using the actual
hardware in a realistic environment (see Section 3.2). The data generation script, as well as the
test setup, are described in another paper (see [4]), here only an overview is given.
After generating the required test data, we optimized the input parameter values on a data set
covering various meteor events. The optimization allowed us to find a parameter setting that
delivers a high and reliable detection rate for different meteor events. We developed a Python
script that automates the process of testing and parameter optimization (see Section 3.3).

3.1 Testdata generation
The only video data showing a meteor from orbit is taken from the International Space Station
(ISS) by the METEOR project from Planetary Exploration Research Center (PERC) (see
[5]). Using these videos for the SpaceMEDAL development is possible, but does not allow
for systematic testing of different meteor properties. Furthermore, the camera properties and
settings (especially the frame rate) influence the representation of a meteor in the image and
therefore the design of the detection algorithm. Also, the videos are only available in a low
resolution.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 5



Thus, the Python software Artificial Meteorvideo Simulation Software (ArtMESS) was deve-
loped. This software allows to generate a wide range of test data required to test the algo-
rithm. Since SpaceMEDAL must be able to detect meteors with different properties (velocity,
brightness, and duration), multiple videos with different meteor properties are generated to
systematically test the algorithm. The test set is also used to evaluate the effect of different
algorithm parameters on meteor detection by running the algorithm with different parameters
on the same dataset and evaluating the effect on the detection rate.
The test set consists of videos showing a meteor from the perspective of a satellite (see Fi-
gure 4). Therefore, images containing a meteor are generated depending on various settings,
which are combined with different available backgrounds. This is done by overlaying the back-
ground image with the meteor image, storing the combined images as a video frame, and finally
upscaling the resulting video to increase resolution.

Figure 4. An artificially generated meteor implemented into a video taken from the ISS by the
PERC project a

ahttps://www.youtube.com/watch?v=2DVsYWhvf0U

Three different types of backgrounds are used for different purposes: A black background
(only the meteor is shown) is used to evaluate the effect of different meteor properties on the
algorithm performance. Furthermore, different SpaceMEDAL parameters and their effect can
be tested. Next, the black marble images12 showing the Earth at night are used to generate a
moving background including city lights. This allows to test the algorithm with a more realistic
background and evaluate the effect of city lights. Additionally, it is possible to implement a
rotation around the optical axis. This simulates the rotation of the satellite in case the attitude
control system is not able to stabilize the satellite perfectly. Finally, the videos taken from the
ISS by the PERC project are used to generate videos with a realistic background including city
lights, clouds, and lightning.
Since the ArtMESS tool allows to generate a lot of videos fast, it is used to generate different
test sets with different meteor and background properties allowing to optimize the algorithm
parameter set for specific videos. The ArtMESS tool also exports the position and frame
number of each implemented meteor, to allow an automatic evaluation after the algorithm
processed the videos.

1https://blackmarble.gsfc.nasa.gov/
2https://earthobservatory.nasa.gov/features/NightLights

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 6



Figure 5. CAD Rendering of the Testbed
frame, showing also the optical rail for camera
mount and bracket for screen mount.

Figure 6. Image of the Testbed during algo-
rithm testing. A meteor video is displayed,
usually the curtain is closed during testing.

3.2 Testbed setup for realistic data generation
The videos can be directly processed by the algorithm, after the test set was generated. How-
ever, camera settings (exposure time) and noise influence the algorithm. Thus, a Testbed was
developed to allow for realistic testing. The Testbed consists of a large OLED screen mounted
on an aluminium frame. The camera is mounted on an optical rail to allow horizontal and
vertical adjustments. An image is shown in Figure 5 and Figure 6. When conducting measure-
ments, the complete setup is covered in a blackout curtain to prevent stray light from entering
the setup.
Furthermore, a small Python script is used to semi-automatically image multiple videos: This
script generates folder names from the videos which should be displayed, controls the camera,
and stores all images in the according folder. The operator only has to start imaging and video
display at the same time. This allows to capture a large amount of image data with low effort,
thus allowing to test the algorithm with a lot of data. More details about the ArtMESS tool
and the Testbed calibration can be found in [4].

3.3 Automatic data evaluation and parameter optimization
After imaging all videos, the test data must be processed by SpaceMEDAL and the results
evaluated.
Our goal is to find a combination of input parameters that achieves a high detection performance
for a variety of meteor events. The SpaceMEDAL parameters influence the preprocessing of
the images, the calculation of the dense optical flow, and the calculation of the main motion
of the background. Further, the input parameters define the properties a blob has to fulfil to
be classified as a meteor. These properties amongst others include the area and circularity of
a blob or the standard deviation of a blobs intensity.
In order to evaluate the performance of SpaceMEDAL, we consult the precision and the recall
values, two common metrics to evaluate object-detection algorithms. Precision P is the propor-
tion of correct detections and describes the algorithm’s ability to identify only relevant objects.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 7



Recall R is the ratio of correct detections to all ground truths and describes its ability to find
all relevant cases. The two values are calculated as follows (see [6]):

P = TP

TP + FP
= TP

all detections (1)

R = TP

TP + FN
= TP

all ground truths (2)

The harmonic mean of precision and recall is called F-measure F (see [7]):

F = 2 · P · R

P + R
(3)

For SpaceMEDAL, we define a True Positive (TP) as a meteor that is detected in at least one
frame by the algorithm. Every false detection is a False Positive (FP) and every meteor which
is not detected at all is a False Negative (FN).
We developed a data evaluation script in Python which automates the process of running Space-
MEDAL with different test data and parameters. Further, the script evaluates the respective
detection performance.
The script first determines the expected meteor positions in the provided camera images (ground
truths). This is done using the exported meteor positions from ArtMESS and the geometric
Testbed calibration linking screen to camera pixel positions. Then, the script adjusts the values
of the input parameters in the config.cfg file and starts the meteor detection algorithm.
After SpaceMEDAL processed all images of the data set and exported the positions of detected
meteors, the Python script compares these detections to the ground truths, identifies TPs, FPs
and FNs and calculates recall, precision, and F-measure. A detailed explanation of the script
can be found in [8].
We first manually adjusted the input parameter values. This helped us to understand the effects
and relevance of different parameter values and meteor properties on the detection performance.
Further, we were able to identify a favourable range of values for each parameter. Afterwards,
we used these parameter values as an input for a Nelder-Mead optimization (see [9]). The
Nelder-Mead optimization is based on the comparison of function values and does not require a
function gradient. Thus, it is suitable to optimize the input parameters of our meteor detection
algorithm.
The optimization is conducted with Python’s scipy.optimize.minimize() function (see [10]).
This method takes an objective function of one or more variables and minimizes its return
value. The Nelder-Mead optimization approaches the sought minimum by iteratively adjusting
the values of the variables depending on the return value of the objective function.
For SpaceMEDAL, the goal is to achieve a high detection performance which is indicated by
a high F-measure. Hence, the optimization minimizes the negative F-measure. The objective
function is a method that creates the config.cfg file containing the input parameter values,
executes the meteor detection algorithm, and evaluates its performance based on the automatic
data evaluation script. It returns the negative F-measure.
SpaceMEDAL uses a total of 30 parameters. In order to facilitate the optimization, only the six
parameters which we identified to have the largest impact on the meteor detection were opti-
mized. The selected parameters mainly influence which types of blobs are considered a meteor
and how the background motion is determined. We selected 113 videos (black marble and ISS
background) featuring meteors of different angles, brightness, and speed for the optimization.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 8



With the optimized parameter values, the meteor detection algorithm detected 89 of 113 mete-
ors while only detecting 5 FPs. Hence, 94.68 % of all detections are correct (P = 0.9468) while
78.76 % (R = 0.7876) of all meteors were detected. The high F-measure of 0.8599 indicates a
very robust and reliable meteor detection algorithm.
Although the optimized parameter values deliver great performance for the consulted test data,
the parameter values and their respective performance should be interpreted as references
and not as specifications. This is because only a limited amount of data was used for the
optimization. Hence, other parameter values might be more suitable for different meteor events
and in-orbit optimization of the parameters might be necessary. Further, due to the short
duration of the videos, the frequency of meteors in the test data is higher than expected in
orbit. It is possible that the number of false detection increases in orbit, where the frequency
of meteors is lower.

3.4 SUMMARY
The presented space-based meteor detection algorithm works well and is able to detect meteors
of different properties, such as velocity and brightness, in front of different backgrounds. Our
novel approach of using a combination of optical flow calculations and blob detection to deter-
mine parts of the image moving different than the background is a promising solution for the
challenge of space-based meteor detection.
Additionally, during the algorithm development, several software tools and procedures have
been developed, which can also be used for other space-based meteor detection missions. These
tools are a crucial part of the development effort since they allow for fast, low-effort, and
realistic test campaigns. The tools include the software to generate test data (ArtMESS), the
Testbed setup and calibration as well as the automated evaluation of detection performance and
optimization of the algorithm’s parameter. All these tools can be easily adapted for different
instruments.

4 SpaceMEDAL ALGORITHM IMPLEMENTATION

As shown in the previous section, SpaceMEDAL delivers a good detection performance. How-
ever, for a successful mission, the algorithm must process the images on the PLOC in a reaso-
nable time. The time needed to process one image has a huge influence on the scientific output
of the mission. The longer the processing needs, the more power is used and thus fewer images
can be taken and processed, decreasing the chance of successful meteor observation (see [11] for
more details on the analysis of the scientific output). Therefore, the efficient implementation
of the algorithm is crucial for mission success.
Furthermore, the algorithm must be controlled remotely, including configuring parameters.
Thus, the algorithm control must be implemented in the PLOC software. The PLOC software
is based on the Flight Software Framework (FSFW) developed at the IRS, which allows remote
commanding and control of a satellite (see [12]).
In this section, the used hardware for the PLOC, the software tools used to develop a hardware-
accelerated algorithm as well as details about the algorithm implementation in the PLOC
software is given.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 9



4.1 HARDWARE
The SOURCE PLOC (see Table 2) is based on the Trenz TE0720-03-1CFA. The board is moun-
ted on the so called port expander, a circuit board designed by the SOURCE team. The port
expander connects different components of the satellite bus to the Onboard computer (OBC).
For the payload subsystem, the board is mounting the PLOC board, implementing interfaces
to the MeSHCam and PRIma as well as to the OBC to receive commands. Furthermore, the
SD Card used for image storage and the PLOC software is located on the port expander. The
MeSHCam and PRIma are directly connected and controlled by the PLOC. However, the power
supply of both cameras is controlled by the Power Control and Distribution Unit (PCDU).

Table 2. Data sheet SOURCE PLOC

Property Value
Mass memory (SD Card) 32 GB
Working memory 1 GB
Processing unit ARM dual-core Cortex-A9 MPCore
Interfaces Gigabit Ethernet, USB 2.0, I2C, SPI
Power consumption ∼ 3.5 W

4.2 SOFTWARE
The general software outline is shown in Figure 7. The operating system used is Linux, which
runs the Autostart software as a system service, a small software which starts the PLOC
software. PLOC software is the term of the main software used for camera control and image
processing. The PLOC software is using the FSFW as well as Common Vision Blox (CVB) for
camera control and OpenCV for image processing.

Figure 7. Overview of SOURCE instrument software design

Operating System The operating system used on the PLOC is the Linux distribution
Ubuntu 18.04 LTS, which allows to make use of the standard software repository to install
necessary packages (e. g. libraries needed for the FSFW or OpenCV ). Since the operating sys-
tem is running on an embedded board, it is necessary to build a custom Linux kernel as well
as the boot loader responsible for starting the system.

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 10



The custom kernel is generated using the software tools from the manufacturer called Vivado
and Peta Linux. While Vivado is used to configure the hardware (e. g. interfaces and processor
clock frequency), Peta Linux is used to configure and generate the Linux kernel based on the
configured hardware. The configuration of the operating system after successfully booting the
system includes installing all necessary dependencies as well as needed software (e. g. OpenCV
and CVB). Also, the Autostart software, which is used to first establish communication with
the OBC and start the PLOC software, is configured to start automatically after booting as a
system service.
With these steps the configuration of the PLOC and the operating system basis is finished and
able to run the PLOC software. More information about the individual parts of the PLOC
software is given in the following.

Flight Software Framework As a basis for the PLOC software (written in C++) the Flight
Software Framework (FSFW) developed at the IRS is used (see [12] for more details). The usage
of FSFW allows for a faster software development since the framework provides functions and
interfaces required for a satellite software. The framework includes functions to generate inde-
pendent tasks for every object, functions to communicate between those task as well as functions
to process and distribute Packet Utilisation Standard (PUS) messages. PUS messages are used
in satellite communications to command and control a satellite. In the SOURCE satellite the
PLOC is commanded by the OBC, which is commanded from ground using commands based
on the PUS. Therefore, an easy way to command the PLOC is to forward packets from the
OBC. Thus, using the FSFW with the already implemented PUS standard allows for an faster
development. Furthermore, the development effort could be reduced, by using similar code im-
plemented in the SOURCE OBC, e. g. reading the serial communicating port which connects
PLOC and OBC as well as the code to control the file system.
Since the framework is an object orientated framework written in C++, all needed functiona-
lities are implemented in objects. For the PLOC software, the most important objects for the
algorithm implementation are:

• MeSHCam Handler
• SpaceMEDAL Handler
• File System Handler
• Serial Interface Handler
• System Handler

The MeSHCam handler is responsible for controlling the camera (set parameters, take images),
conducting meteor observation and store meta data for each observation (number of images
taken, image names). This information is used by SpaceMEDAL, to process the according
images and keep only the images containing a meteor. The file system handler is responsible
for data exchange with the OBC (e. g. software updates and images), deleting images and
providing information on the file system (e. g. number of stored images, free storage space).
The system handler provides functions to control the operating system, e. g. execute commands
in the command line, compile software and apply software updates. Messages are received via
the serial interface, which is controlled by the serial interface handler.
Each object implements functionalities from the FSFW , mostly interfaces (IF) used to com-
municate with the object and execute functions. Those interfaces include executing commands

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 11



Figure 8. Detailed overview of SOURCE instrument software design

(HasActionsIF), providing different modes (HasModesIF) and receive parameters and messages
(ParameterMessagIF).
A more detailed layout of the PLOC software is shown in Figure 8.

libconfig libconfig is a library used to read configuration files in C++. A configuration file
contains values for variables, which are used in the software. By changing those values, it is
possible to change the behaviour of the program without having to recompile it. In the PLOC
software, configuration files are used by the MeSHCam and SpaceMEDAL handler to store
camera and algorithm parameters.

OpenCV OpenCV is an open-source software library, used to process the images with Space-
MEDAL. For SOURCE it us used in version 3.4.0, since this version is used by the hardware
acceleration (see Section 4.4). The main functions used are the optical flow and blob detection
functions as well as some functions for image processing (e. g. thresholding). For more details,
see the algorithm section (Section 2).

CVB Common Vision Blox is a framework from Stemmer Imaging to develop applications for
cameras using the GigE Vision interface. It offers different Application Programming Interfaces
(APIs), to control the camera and take images. The C++ interfaces are integrated in the
MeSHCam handler object.

4.3 COMBINATION of FSFW and ALGORITHM
The algorithm is not directly implemented into the PLOC software, instead SpaceMEDAL is a
separate binary file called using the CommandExecutor of the FSFW . This solution is chosen due
to three main reasons: First, the PLOC software and SpaceMEDAL are both complex software,
but with different tasks and thus design decisions. Merging both software would require major
redesigns in the algorithm and violate design principles of the FSFW .

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 12



Second, the algorithm uses hardware acceleration as described in the next sections. This
requires a separate special compiler to compile the binary file of the algorithm. Using this
compiler with the FSFW would require changes in the complex build system.
Third, using a separate binary makes updating the algorithm easier, since the software can
be compiled on ground and send to the PLOC without changing the PLOC software, which
increases reliability.
The CommandExecutor allows to execute the algorithm in non-blocking mode, meaning the
PLOC software can continue running, while the algorithm is executed. The output of the
algorithm is passed to the PLOC software, thus the status of the algorithm can be monitored.
The algorithm reads the configuration file after being started. Here, the folder containing the
images which should be processed is specified. The images from each observation are stored
in a folder called OBS_X with X being the number of the current observation. Furthermore,
each image of the observation is also numbered consecutively. In the configuration file, the last
number of the OBS folder processed as well as the last image processed is stored. Thus, the
processing can be continued after stopping the algorithm or a specific folder to be processed
can be set from ground by modifying the configuration file.
If a meteor is detected, the according images are stored in a PROC_X folder, which can be
downlinked.
The algorithm is stopped either automatically once all images are processed or using a stop
command. The stop command is either issued by the OBC or by the PLOC software if the
algorithm is set to run for a specific amount of time.

4.4 HARDWARE ACCELERATION
As mentioned, besides the detection performance, the speed performance is a crucial aspect of
the algorithm. It describes how many frames the algorithm processes per second. It is crucial
to increase the speed performance, in order to increase the scientific output of the mission.
Since the SOURCE PLOC has a FPGA, it is possible to increase the processing speed, by
outsourcing parts of SpaceMEDAL into the FPGA. This means, some functions are implemented
directly in the hardware of the FPGA and thus are not executed by the Central Processing
Unit (CPU). A function implemented in hardware works usually orders of magnitude faster.
The manufacturer of the FPGA offers the possibility to compile a program with some functions
of the program implemented in hardware. Several steps and multiple software packages are
required before the hardware acceleration is working, in this paper only the results are given.
The actual hardware acceleration is implemented in a software called SDSoC. This software is
needed to compile the algorithm with selected functions exported to hardware.
The existing algorithm source code (written in C++) is imported into SDSoC. Since the image
processing functions (optical flow and blob detection) fromOpenCV are the most time-consuming,
those are candidates for hardware acceleration. In a first step, the optical flow calculations are
exported into hardware. The function call calc-Optical-Flow-Farneback is replaced by an
identical function from xfOpenCV 3. The xfOpenCV library provides kernels containing OpenCV
functions optimized for the used FPGA. After replacing and selecting the according function
for hardware acceleration, the algorithm is compiled and the binary file can be executed on the
PLOC.

3See https://github.com/Xilinx/xfopencv

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 13



For comparison, the same algorithm without hardware acceleration is also run on the PLOC.
As an example, one of the test set videos is processed with both versions and the time needed
for different processing steps is measured. The results are shown in Table 3. As can be seen,

Table 3. Final algorithm speed performance. The processing time for one frame is shown. The
optical flow step includes the optical flow calculations as well as background subtraction.

Processing step Without acceleration (ms) With acceleration (ms)
Optical flow calculation 2000 380
Complete meteor detection 2450 810

the hardware acceleration of the optical flow calculations improves the overall runtime by
a factor of 3, the optical flow calculations alone are more than 5.2 times faster. This is a
significant acceleration and allows the algorithm to process images in a reasonable time. The
current processing rate of ∼ 0.8 s per image can be further improved: Currently, no other
speed optimization is done, for example reducing the number of copy operations of image data.
Furthermore, more functions could be accelerated by hardware, e. g. the blob detection. Thus,
a processing rate of ∼ 0.5 s per imagee is realistic. Higher rates can be achieved with more
powerful PLOC hardware.

5 SUMMARY and OUTLOOK

In this paper, we presented the concept of our novel meteor detection algorithm called Space-
MEDAL. It is based on optical flow calculations, in order to distinguish between meteor and
background motion. This allows to solve the challenge of detecting meteors from a moving
satellite.
The presented algorithm works well and is able to detect meteors of different properties, such
as velocity and brightness, in front of different backgrounds. Applying SpaceMEDAL to our
test set results in 94.68 % correct detections while 78.76 % of all meteors were detected. The
high F-measure of 0.8599 indicates a very robust and reliable meteor detection algorithm.
The algorithm is a crucial part of any spaceborne meteor detection mission since the down-
link capacity of satellites is limited. Thus testing and adapting the various parameters of the
algorithm is important to ensure that meteors can be detected. Therefore, we developed the
software ArtMESS to generate a systematic test set containing different meteors and different
backgrounds. Furthermore, we developed and calibrated a Testbed, which displays those vi-
deos. Together with an automated imaging of the videos and automated evaluation of the
algorithm results, this setup allows to test SpaceMEDAL fast, systematically, and in a realistic
environment. The developed tools and procedures are a crucial part of the development effort.
However, some work still needs to be done before SpaceMEDAL can be deployed. This includes
work on the algorithm itself as well as on the implementation in the PLOC software. Regarding
the algorithm, more tests are required using additional test sets in order to adapt the algorithm’s
parameters for different scenarios. The idea is to develop different parameter sets for different
scenes. Therefore, test sets for different scenes should be generated and a wide variety of
meteors implemented in those scenes. Depending on the scene (e. g. Ocean, clouds, or city
lights) SpaceMEDAL should autonomously decide which parameter set should be used. This

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 14



could be done by evaluating the histogram of an image. Furthermore, the rotation of the
satellite must be considered in more detail, thus test sets with different rotation rates should
be developed and parameter sets derived.
Finally, the implementation in the PLOC software must be tested, to ensure the algorithm
can be remotely commanded and works as intended. Once the implementation is finished, it is
planned to publish SpaceMEDAL as well as the used tools to (e. g. ArtMESS) on the IRS git
server (https://egit.irs.uni-stuttgart.de/).

REFERENCES

[1] Annika Stier et al. “Combination of Interdisciplinary Training in Space Technology with
Project-Related Work through the CubeSat SOURCE”. In: (2020) (cit. on p. 2).

[2] Peter S Gural. “Algorithms and software for meteor detection”. In: Advances in Meteoroid
and Meteor Science. Springer, 2007, pp. 269–275 (cit. on p. 3).

[3] Gunnar Farnebäck. “Two-Frame Motion Estimation Based on Polynomial Expansion”.
In: Proceedings of the 13th Scandinavian Conference on Image Analysis. LNCS 2749.
Gothenburg, Sweden, June 2003, pp. 363–370 (cit. on p. 3).

[4] Marcel Liegibel et al. “Meteor observation with the SOURCE CubeSat - Developing a
simulation to test on-board meteor detection algorithms”. In: 4th Symposium on Space
Educational Activities. 2022 (cit. on pp. 5, 7).

[5] T Arai et al. “Meteor observation HDTV camera onboard the international space station”.
In: Lunar and Planetary Science Conference. 1777. 2014, p. 1610 (cit. on p. 5).

[6] Rafael Padilla et al. “A Survey on Performance Metrics for Object-Detection Algorithms”.
In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP).
2020, pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130 (cit. on p. 8).

[7] Yutaka Sasaki. “The truth of the F-measure”. In: Teach Tutor Mater (Jan. 2007) (cit. on
p. 8).

[8] Julia Zink. “Test and optimization of an on-board meteor detection algorithm for the
CubeSat SOURCE”. English. Master Thesis. Stuttgart, 2021 (cit. on p. 8).

[9] John A. Nelder and Roger Mead. “A Simplex Method for Function Minimization”. In:
Comput. J. 7 (1965), pp. 308–313 (cit. on p. 8).

[10] SciPy documentation. minimize(method=’Nelder-Mead’). https://docs.scipy.org/
doc/scipy/reference/optimize.minimize-neldermead.html\#optimize-minimize-
neldermead, last accessed on 27.10.2021 (cit. on p. 8).

[11] Jona Petri. “Satellite formation and instrument design for autonomous meteor detection”.
English. PhD Thesis. Stuttgart, 2022 (in review) (cit. on p. 9).

[12] Bastian Bätz. “Design and implementation of a framework for spacecraft flight software”.
Stuttgart, 2020. url: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-
112229 (cit. on pp. 9, 11).

The 4S Symposium 2022 - J.Petri, J. Zink, S. Klinkner 15


