
DEVELOPMENT OF AN ATTITUDE DETERMINATION AND CONTROL STRATEGY
FOR THE ST3LLARSAT1 CUBESAT MISSION
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ABSTRACT
This paper presents the development of the attitude determination and control subsystem
(ADCS) for ST3LLARsat1 ”BOIRA”, a 2U student CubeSat mission aimed at educational and
scientific objectives, specifically, measuring atmospheric water vapor. The mission comprises
two main ADCS operational modes: detumbling and attitude pointing. Currently, three
detumbling control solutions have been defined, and are presented and compared here in terms of
key factors such as detumbling time and power consumption. For the attitude pointing mode,
mainly for nadir, a hybrid approach combining the Triad method and an extended Kalman filter
is employed for determination, and a sliding mode approach for the attitude pointing, which is
actuated using only magnetic-torquers. Model in the loop simulation results conducted using
MATLAB/Simulink indicate that the designed B-dot controller fulfills our mission detumbling
requirements, and that the attitude pointing controller can provide a nadir attitude knowledge
error and an attitude pointing error of respectively ≤ 3 and 5 degrees. A Monte Carlo campaign,
under various disturbances and uncertain parameters, was also conducted to validate the
performance of the developed algorithms.

1 INTRODUCTION

The Attitude Determination and Control Subsystem (ADCS) is one of the challenging and crucial
subsystems of a satellite, responsible for providing attitude and stability required for the mission.
The attitude control solution implemented for ST3LLARsat1 relies on a fully magnetic actuation
system, employing a combination of three orthogonal magnetorquers. The use of magnetic actuators
offers several advantages, including low power consumption, compact volume, and minimal
mass [1]. However, the spacecraft’s control is underactuated, meaning that it lacks sufficient control
inputs to address all degrees of freedom simultaneously. Specifically, the magnetic actuators can
only supply control torque perpendicular to the geomagnetic field vector. This limitation restricts the
spacecraft’s ability to maneuver in certain directions [2, 3]. A significant body of research has
focused on the analysis and design of magnetic control laws in the linear regime [4, 5, 6],
specifically addressing control laws for the nominal operation of satellites near their equilibrium
attitude. In [7], feedback laws achieving local exponential stability, even in the presence of
substantial uncertainties in the spacecraft’s inertia matrix, were proposed. The Sliding Mode Control
(SMC) for attitude stabilization of satellites has been proposed as a solution, even in cases where
pure magnetic actuators are employed [8, 9, 10].
Satellite attitude determination is another critical aspect of ADCS subsystem design, as it provides
essential attitude estimation for effective control. However, this task becomes particularly
challenging when using Commercial Off-The-Shelf (COTS) equipment. To address this challenge, a
hybrid approach that combines the Triad method [11, 12] with the Extended Kalman Filter (EKF)
algorithm is proposed for ST3LLARsat1. This integration leverages the simplicity of the Triad
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method, which uses vector observations, while also harnessing the accuracy and adaptability of the
EKF approach. The Kalman filter [13] has emerged as the predominant framework for developing
orientation filter algorithms [1, 14], as well as for powering commercial inertial orientation sensors.
Notably, companies such as Xsens [15], Micro-strain [16], VectorNav [17], Intersense [18] have built
their systems around the principles of the Kalman filter. This widespread reliance on Kalman-based
solutions underscores their reputation for providing highly accurate and effective orientation
estimation.
The layout of the article is as follows. Section 2 describes the ST3LLARsat1 mission. Section 3
presents the ADCS scheme covering the equipment and connection of algorithms. Subsequently, the
methods for attitude determination and control are presented in Section 4, whereas Section 5 discusses
the results of ADCS simulations. Finally, conclusions are given in Section 6.

2 DESCRIPTION OF THE MISSION

2.1 Mission description and requirements

ST3LLARsat1 ”BOIRA” is the first student CubeSat established at the Universidad Carlos III de
Madrid (UC3M). The student CubeSat program started in September 2022 and was selected by the
European Space Agency (ESA) in December 2022 for participation in its pilot Fly Your Satellite!
(FYS!) Design Booster program. This ESA initiative aims to assist European university teams to
consolidate their CubeSat designs. This program lasts 1.5 years and will finish in May 2024.
The primary objective of ST3LLARsat1 is to design, integrate, validate, launch, and operate a 2U
CubeSat, primarily focused on educational purposes, with secondary objectives related to technology
demonstration and scientific exploration. The educational aspect involves providing students with
practical involvement in a real space project through a blend of theoretical learning and hands-on
application. The technological goals include demonstrating two in-house developed innovations: a
compact, dual-circular, non-deployable antenna; and an on-board computer architecture capable of
including advanced ADCS algorithms coded in-house. Additionally, from a scientific standpoint, the
mission aims to demonstrate that atmospheric water vapor measurements can be taken in such a small
spacecraft and using a COTS spectrometer.
The main technical specifications for the mission as well as the ADCS subsystem requirements are
detailed in Table 1. The nominal orbit is a circular, Low Earth Orbit (LEO) with the orbital parameters
given in the table. And the flowed-down ADCS requirements shown in the table were obtained based
on mission analysis and the payload characteristics for a range of orbits. Further information on the
mass properties of the components and CubeSat are found in subsequent sections (see for example,
Table 2 and Table 3).

Table 1: ST3LLARsat1 technical specifications and ADCS requirements.

Parameter Symbol Value Parameter Symbol Value
Size Sc 2U Orbital Altitude Alt 425 km
Mass M 1.65 kg Orbital inclination i 97.12 deg
Power P 4.8W Orbital eccentricity e 0.0001

TC/TM† Band bT UHF Attitude Pointing Error APE ≤ 10 deg
TC/TM† Frequency fT 435−438MHz Attitude Knowledge Error AKE ≤ 5 deg
†TC/TM denotes the telecommunication command and telemetry respectively.
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2.2 Dynamic and Kinematic equations

The dynamics of a satellite within the Earth-Centered Inertial (ECI) frame are governed by Euler’s
equations of motion, Eq. 1, which describe the changes in angular velocity caused by control T c and
disturbance T dist torques. Changes in angular velocity can be used to determine the variation with
time of the quaternions, thereby providing the evolution of the satellite attitude [19, 20], Eq. 2.

ωBI = (IB)
−1[T c + T dist − ωBI × (IBωBI)] (1)
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Here, ωBI denotes the angular velocity of the satellite relative to the ECI frame, where the moment
of inertia matrix is represented by IB. Additionally, it is noted that the disturbance torque T dist is
composed of: the gravity-gradient T gg, the residual magnetic Tmag, the aerodynamic drag T a, and
the solar radiation T s torque components.
As aforementioned, the desired orbit for the ST3LLARsat1 mission is in LEO where atmospheric
density, magnetic field, and gravity gradient are quite high. Thus, the disturbance torques have a
considerable impact on the satellite dynamics and can be calculated by [1] :

T gg =
3µ

r5
(r × (IB · r)), (3)

T mag = −BB ×mres, (4)

T a =
N∑
i=1

di × Fa (5)

T s =
N∑
i=1

di × Fs (6)

where µ is the gravitational parameter, r is the position vector of the center of mass (CoM) of the
satellite in the ECI frame, mres is the residual magnetic dipole, BB is the magnetic field in body-
frame coordinates and di is the vector from the satellite CoM to the center of pressure of the ith plate.
The aerodynamic force (F a) and solar pressure force (F s) are given by [1]:

F a = −1

2
ρCd

∥∥vrel B

∥∥vrel BSimax(cos θa, 0) (7)

F s = −PsSi

[
2(
Ri

diff

3
+Ri

spec cos θs
i)ni

B + (1−Ri
spec)SB

]
max(cos θs

i, 0) (8)

where ρ represents the atmospheric density, CD is a dimensionless drag coefficient, vrel B is the
relative velocity in the body frame, S is the surface area, nB is the unit normal vector in the body
frame, Ps is the solar radiation pressure, SB is the sun vector in the body frame, Rdiff is the diffuse
reflection coefficient, and Rspec is the specular reflection coefficient. The angles θa and θs represent
the inclination of the ith plate to the relative velocity and solar pressure, provided by
θa = cos−1

(
ni
B ·vrel B

∥vrel∥

)
and θs = ni

B · s, respectively. The max function ensures that only the surfaces
facing the flow are taken into account. See Table 3) for the values of the main parameters above.
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3 ADCS SCHEME

ST3LLARsat1’s on-board computing architecture consists of two different microcontrollers: one
dedicated to the on-board computer (OBC), serving as the main brain of the satellite for managing
and controlling different subsystems; and another microcontroller dedicated to the ADCS subsystem.
This approach aims to reduce the computational burden and load on the OBC microcontroller. The
two boards are connected to each other using a serial protocol via PC/104 to facilitate the
transmission of OBC commands to the ADCS board and the tranmission of satellite attitude,
velocity, and position data to the OBC board. Fig. 1 shows the main components related to the
ADCS subsystem plus the payload.

Figure 1: The integration of the ADCS equipment onto the ST3LLARsat1 structure.

The overall ADCS architecture is presented in Fig. 2. The sensors employed are detailed in the left
side of the figure. This includes one three-axis gyroscope, one magnetometer, and 16 photodiodes
serving as coarse sun sensors. These sensors provide essential measurements for the attitude
determination algorithms, which utilize a Triad algorithm to initialize an Extended Kalman filter.
Additionally, an orbit propagator is used that utilizes Global Navigation Satellite System (GNSS)
data to estimate the CubeSat’s orbital position. This propagator is designed to continue propagating
the position in case the GNSS equipment is switched off in order to reduce power consumption.

Figure 2: Schematic diagram of the ADCS subsystem
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The control function in Fig. 2 includes different control algorithms (see Section 4.2) for the two
ADCS operational modes (detumbling and attitude pointing). Finally, the actuation suite is composed
of three magnetic torquers (see right side in Fig. 2), comprising two rods and one air coil. They are
responsible for generating the required torque on the satellite body to control its orientation.
The list of ADCS components is reported in Table 2. In addition, their mass, power consumption and
duty cycle details are also included.

Table 2: ADCS mass and power budget.

Equipment Model Number Mass (gr) Power (mW ) Duty cycle(%)
Magnetometer PNI RM3100 1 0.25 2.2 20

Photodiode OSRAM SFH 2401 16 0.043 0.065 100
Gyroscope ADIS16500 1 1.75 200 100

GNSS Orion B16-C1 1 1.7 215 100
Magnetorquer rods CubeSpace CR0002 2 33 327 80
Magnetorquer coil CubeSpace CubeCoil 1 46 600 80

Microcontroller Microchip SAMV71Q21 1 1.365 297 100
Total 116.985 1969.24

4 ATTITUDE DETERMINATION AND CONTROL ALGORITHMS

4.1 Attitude determination

4.1.1 Tri-Axial Attitude Determination Method (TRIAD)

The TRIAD algorithm is employed to determine the attitude of the CubeSat, using measurements
from sun sensors and magnetometer. In our attitude determination strategy, TRIAD’s output is used
to initialize the Extended Kalman Filter (EKF) algorithms, accelerating its convergence. The output
of the algorithm is the rotation matrix from the orbit reference frame to the body reference frame. In
the body reference frame, the necessary vectors are determined using available sun sensors and
magnetometer. For the orbital frame, the vectors for the magnetic field are computed from the
International Geomagnetic Reference Field (IGRF), while the sun vector is obtained from the
satellite’s location estimated by an orbit propagator or GNSS, with consideration for the current
time [11, 12]. The rotation matrix can be calculated by:

t1B =
SB

∥SB∥
, t2B =

SB ×BB

∥SB ×BB∥
, t3B = t1B × t3B (9)

t1O =
SO

∥SO∥
, t2O =

SO ×BO

∥SO ×BO∥
, t3O = t1O × t3O (10)

RO→B = [t1O, t2O, t3O] [t1B, t2B, t3B]
T (11)

where SO and BO represent the sun vector and magnetic field in the orbital frame, respectively, while
SB and BB represent them in the body frame.

4.1.2 Extended Kalman Filter

The Extended Kalman Filter (EKF) is utilized to estimate an orientation represented as a quaternion
q. Initially, the state is predicted using the measurements from the gyroscopes. Subsequently, this
predicted state is refined using measurements from both sun sensors and magnetometer. It is important
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to note that gyroscopic data are treated as external inputs to the filter rather than as measurements.
Consequently, their measurement noises are incorporated into the filter as process noise rather than
as measurement noise [21]. In the designed filter, the quaternion serves as the state vector, while the
angular velocity functions as the control vector. The estimation process comprises two primary steps:
prediction and correction.

Prediction
In the initial step, the quaternion at time t is predicted by integrating the angular rate ωBI and

adding it to the previously computed quaternion qt−1. This process can be summarized as per [21]:

q̂t = f(qt−1,ωBI) = (I4 +
∆t

2
ωBI)qt−1 (12)

where ∆t represents the sensor’s sampling time, ωBI is calculated using Eq. 2, and qt−1 denotes the
quaternion at the previous sampling time.
The prediction error covariance matrix P̂ , which characterizes the uncertainty of the state vector
prediction, is determined by:

P̂t = F (qt−1,ωBI)Pt−1F (qt−1,ωBI)
T +Qt (13)

Here, Qt represents the process noise covariance matrix, and the matrix F is calculated as follows:

F (qt−1,ωBI) =


1 −∆t

2
ωx −∆t

2
ωy −∆t

2
ωz

∆t
2
ωx 1 ∆t

2
ωz −∆t

2
ωy

∆t
2
ωy −∆t

2
ωz 1 ∆t

2
ωx

∆t
2
ωz

∆t
2
ωy −∆t

2
ωx 1

 (14)

Correction
The gyroscope measurements are used to predict the new state of the quaternion. However, there

are also sun sensor and magnetometer readings available that can be used to correct the estimation.
The corrected state can be computed as follows:

qt = q̂t +Kt(zt − h(qt)) (15)

where zt = [SB,BB] is the current sensor measurement, Kt is the Kalman gain and ht is the
observation matrix determined by [21]:

h(q̂t) =

[
ŜB

B̂B

]
= 2


SIx

(
1
2
− q22 − q23

)
+ SIy(q0q3 + q1q2) + SIz(q1q3 − q0q2)

SIx(q1q2 − q0q3) + SIy

(
1
2
− q21 − q23

)
+ SIz(q0q1 + q2q3)

SIx(q0q2 + q1q3) + SIy(q2q3 − q0q1) + SIz

(
1
2
− q21 − q22

)
BIx

(
1
2
− q2y − q2z

)
+BIy(q0q3 + q1q2) +BIz(q1q3 − q0q2)

BIx(q1q2 − q0q3) +BIy

(
1
2
− q21 − q23

)
+BIz(q0q1 + q2q3)

BIx(q0q2 + q1q3) +BIy(q2q3 − q0q1) +BIz

(
1
2
− q21 − q22

)

 (16)

Here, SI and BI denote the sun vector and magnetic field in the inertial reference frame, respectively
and R(q) is the rotation matrix from inertia to body frame.
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Due to the nonlinear nature of the measurement equations, it is essential to compute their Jacobian
matrix accordingly as:

H(q̂t) =
∂h(q̂t)

∂q
= 2

[
uSI [uS + q̂0SI ]× + (q̂v · SI)I3 − SI q̂

T
v

uBI [uBI + q̂0BI ]× + (q̂v ·BI)I3 −BI q̂
T
v

]
(17)

uSI = SI × q̂v (18)
uBI = BI × q̂v (19)

where qv = [q1, q2, q3] and the remaining elements of the EKF in the correction step are obtained as:

St = H(q̂t)P̂tH
T (q̂t) +R (20)

Kt = P̂tH(q̂t)Ŝ
−1
t (21)

Pt = (I4 −KtH(q̂t))P̂t (22)

where R is the measurement noise covariance matrix and P is the covariance matrix.

4.2 Control algorithms

4.2.1 Detumbling Mode

Satellites undergo uncontrolled tumbling in space immediately after separation from their launcher,
requiring a reduction in angular velocity before normal operations can proceed. Therefore, the
primary objective of the ADCS is detumbling, aimed at stabilizing the satellite’s motion.
Currently, three different detumbling control algorithms have been evaluated for ST3LLARsat1
considering different sensor configurations and needs. Next, they will be briefly explained and later
in Section 5.2 they will be compared and analyzed using MIL simulations.
A key consideration for the development of a detumbling control law is ensuring to produce
command proportional to −ω. If both a gyroscope for measuring angular rate and a magnetometer
are available during detumbling mode according to satellite design, the approach involving the
command of magnetic dipole moments is outlined as follows: [1, 22].

m =
k

∥BB∥
ωBI ×BB (23)

where m is a vector with components corresponding to the magnetic moment command aligned with
each of the principal axes for magnetorquers and k is the positive control gain.
In case that the magnetometer is the only sensor employed and there is no direct measurement of the
angular velocity, the standard b-dot algorithm is given by [1]:

m = − k

∥BB∥
ḂB (24)

ḂB = AḂO − ωBI ×BB (25)

Here, A represents the rotation matrix and BO denotes the magnetic field in the orbital frame.
Assuming that for the initial stages of detumbling, BO ≪ BB, Eq. 24 serves as a suitable
approximation of Eq. 23.
To accelerate the decay of the spacecraft’s spin rate, it is also feasible to use a bang-bang solution of
the following form:

m = −mmax sign(ḂB) (26)

where mmax represents the maximum torquer dipole. The bang-bang approach operates based on the
sign of the magnetic field rate, consistently applying the maximum dipole, which results in increased
power consumption.
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4.2.2 Pointing Mode

Once the angular velocity of the spacecraft is lower than a given threshold, the satellite switches from
detumbling to attitude pointing mode. The main pointing is to nadir, where the aim is to point the -z
face of the CubeSat towards Earth in order to communicate and perform the scientific mission. Due to
the need of ensuring control performance in the presence of disturbance and uncertainties, a nonlinear
controller based on sliding mode control is currently proposed for ST3LLARsat1.
The design algorithm is divided into two main steps: the sliding manifold design and the sliding
condition design. To achieve stable satellite motion, a control law is required to force the satellite
motion towards the manifold. The sliding condition ensures that the distance from the state to the
sliding manifold continuously decreases, and thus, every solution originated outside the sliding
manifold converges towards it. The sliding variable s is defined by [23]:

s = ωBO +Kqq (27)

where ωBO is the angular velocity respect to the orbital frame, q is quaternion vector parameters
(q1, q2, q3) and Kq = kq diag(3, 3) is the sliding manifold design parameter matrix where kq is a
positive constant.
The satellite motion can be described in the space of the sliding variable s. The sliding manifold is
the subspace of the state space, where the sliding variable equals zero. An equivalent torque T eq is a
control torque necessary to keep the satellite on the sliding manifold [23]:

T eq = ωBI × IωBI −
1

2
IKq(ωBOq0 + ωBO × q)− 3ω2

O(kO × IkO) + ωOI(iO × ωBO) (28)

where ωO represents the angular velocity of the satellite around the Earth, determined by the equation
ω2
O = µ

r3
, and iO and kO are the unit vector on the orbital frame.

If the satellite is not situated on the sliding manifold, the desired control torque is the sum of the
equivalent torque and a component aimed at facilitating the convergence of the sliding variable to
zero within a finite time frame [10, 23].

T des = T eq −Kss (29)

m =
BB × T des

||BB||2
(30)

Here, the parameter matrix Ks is defined as Ks = ks diag(3, 3), where kq is a positive constant.

5 RESULTS

5.1 Simulation Setup

To simulate and validate the developed attitude determination and control algorithms, a model-in-the-
loop (MIL) simulator implemented in Matlab/Simulink was used, see Fig. 3.
The simulator comprises four main modules: (i) the environment simulation uses a satellite orbit
propagator to generate position and velocity. An International Geomagnetic Reference Field (IGRF)
model estimates the magnetic field. Additionally, rotational matrices from inertia to orbital
coordinate and body frame are included, along with models for disturbance torques such as
aerodynamic drag, solar radiation pressure, gravity gradient, and residual dipole moment; (ii) the
dynamic and kinematic module provides the satellite’s attitude and angular velocity, influencing both
control and disturbance torques; (iii) the sensor and actuator suite discussed in Section 3 is modelled
in the sensors and actuators module based on the technical specifications of each equipment; and (iv)
the navigation and control module encompasses all algorithms intended for implementation on the
ADCS microcontroller. The main parameters considered for simulation are provided in Table 3.
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Figure 3: Model-in-the-loop (MIL) architecture for simulating the ADCS subsystem.

Table 3: Mass Properties and Disturbance Parameters Used in MIL simulation.

Parameter Symbol Value Parameter Symbol Value
MoI (x-axis) Ix 0.003 kgm2 Residual dipole mr 0.001Am2

MoI (y-axis) Iy 0.003 kgm2 Solar Power Ps 1376ω/m2

MoI (z-axis) Iz 0.001 kgm2 Air density ρ 3.76× 10−12kg/m3

Dimension d [0.1,0.1,0.2] cm CoP and CoM offset Lmp 1 cm
Mass m 1.05 kg Drag Coefficient Cd 2

†MoI, COP and CoM denotes Moment of Inertia, Center of Pressure and Center of Mass respectively.
† ρ denotes the density under high solar activity.

5.2 Detumbling

As outlined in Section 4.2.1, three detumbling control algorithms are currently considered for
ST3LLARsat1. This section aims to analyze and compare them for a mission scenario using the
worst initial condition of ω = [90, 90, 90] deg/s with absolute amount of ||ω|| = 155.8 deg/s. It is
noted that the aim is to reach the desired amount of ||ωth|| = 1deg/s, which serves as the threshold
value for transitioning to nadir pointing mode.
The results are presented in Fig. 4. The left plot shows the time-domain comparison of the three
detumbling control approaches whereas the right plot their average power consumption.
The bang-bang controller (see blue line in Fig. 4 – left plot) is able to reduce the angular velocity, but
there exists a minimum rate that it cannot surpass. In contrast, all other two methods can effectively
reduce angular velocity to the desired threshold, ωth. Specifically, for the ω ×B and b-dot methods,
this threshold is achieved at orbital times of 2.12 and 2.25, respectively. This comparison shows
that despite the fact that the ω × B algorithm utilizes both gyroscope and magnetometer data, the
deorbiting time is not significantly lower compared to the b-dot algorithm, which relies solely on
magnetometer data.
Furthermore, the comparison of average power consumption (Fig. 4 – right plot) indicates that the
bang-bang algorithm consumes more power (1.08 W/T ) than the b-dot and ω × B algorithms (0.2
W/T and 0.64 W/T respectively). Additionally, the ω×B algorithm, which incorporates gyroscopes
as well as magnetometers, consumes more power compared to b-dot algorithms. Both b-dot and ω×B
algorithms employ proportional gains, meaning they apply torque according to the angular velocity
of the body, as opposed to bang-bang algorithms, which apply the maximum amount of torque based
on the sign of rotation.
Based on the above power consumption and deorbit time analysis, and considering the slight
difference in deorbit time between the b-dot and ω × B algorithms, along with the considerable
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Figure 4: Comparison of changes in absolute angular velocities during the detumbling mode.

difference in power consumption, the b-dot algorithm appears to be the most effective choice for
detumbling mode for the tested scenario. It is noted that a different strategy could be used depending
on the value of the angular rates, such as: use the bang-bang controller when ω is very high, then
switch to the ω × B controller to quickly reduce the rotation down to a TBD ||ωth||, for example
from 90 to 25 degrees/seconds, and then fine-tune and nominally operate with the b-dot controller.
Fig. 5 shows the time history of angular rate in three axes using the b-dot algorithm, considering a
worst-case initial value of ω = [90, 90, 90] deg/s. During this simulation, a duty cycle of 80% for
applying torque and 20% for reading the magnetic field by the magnetometer is considered to remove
the interaction of the magnetic torque on the measurement.
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Figure 5: Change of angular velocity using b-dot algorithm

5.3 Attitude Pointing - nadir case

According to the defined mission scenario, once the satellite reaches an angular velocity of ωth, it
enters the nadir pointing phase. Fig. 6 (upper plot) shows the pointing errors in the time domain
starting right after the nadir pointing mode is activated.
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The SMC controller achieves nadir pointing with the required accuracy of APE ≤ 10 deg in
approximately 8 orbital periods after entry into the nadir pointing phase. By the 14th orbital period,
the pointing accuracy is further improved to within 5 deg. Throughout these simulations, all
disturbance torques were accounted for, and the controller, in the presence of these disturbances,
successfully maintains the required pointing accuracy. The gains assigned to the SMC controller for
Ks and Kq are 9× 10−8 and 5.5× 10−4, respectively.
During this phase, the EKF serves as the primary attitude determination algorithm, initialized with
a previous estimate obtained from the Triad method. Fig. 6 (bottom plot) shows the EKF error in
the presence of eclipses (highlighted areas represent the illumination period). It is observed that the
accuracy of the EKF for all attitude angles remains better than 3 deg. The algorithm primarily uses
the magnetometer as the main sensor for the correction step due to its superior accuracy compared to
photodiodes. Consequently, the attitude determination error does not increase during eclipse periods.

Figure 6: Pointing accuracy (top) & attitude estimation error (bottom) during nadir pointing phase

5.4 Monte Carlo (Uncertainty) analysis

To evaluate the performance of the algorithms, an uncertainty analysis using Monte Carlo simulation
was conducted. This analysis encompasses both operational modes of detumbling and nadir pointing,
taking into account the range of uncertainty parameters provided in Table 4.

Table 4: Uncertainty range of the parameters considered in the analysis.

Variable Uncertainty Operational Mode
Moment of inertia ±10% Detumbling- Pointing

CoM and CoP offset ±10% Detumbling- Pointing
Air density ±10% Detumbling- Pointing

Initial angular velocity ±[90, 90, 90]deg/s Detumbling
Initial attitude ±[0, 2π] Pointing

Initial angular velocity ±[0, 1]deg/s Pointing
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As reported in the SwissCube mission report [24], the satellite’s rate after release was approximately
90 deg/s around the y-axis. Therefore, to assess the detumbling algorithm’s performance under
worst-case conditions, the magnitude of the initial angular velocity in Monte Carlo analysis was held
constant at ||ω|| =

√
902 + 902 + 902 ≈ 155 deg/s, while the vector components were generated

randomly accordingly. Additionally, regarding air density, the average value was considered under
worst-case conditions of high solar activity predicted for summer 2025. However, a 10% error was
also considered for inaccuracies in the predicted value.
The Monte Carlo analysis for the detumbling mode is presented in Fig. 7. The results show that the b-
dot algorithm is able to reduce ω to ωth under the considered uncertainty. The implementation of the
b-dot algorithm involves taking measurements twice per second. Considering the frequency of ADCS
operation is 10Hz, Monte Carlo analysis demonstrates that even at high angular rates leading to rapid
changes in the magnetic field, this approach of reading sensor measurements when magnetic torquers
are switched off maintains its performance. The simulation results also show that the absolute value
of the angular rate for the entire uncertain conditions reaches ωth within less than 6 orbital periods.

Figure 7: Monte Carlo simulation for the detumbling mode

The Monte Carlo simulation for the nadir pointing mode is presented in Figure 8. The results show
the ability of the SMC controller to maintain an attitude pointing error (APE) lower than 10 deg,
considering different uncertainties and disturbances applied to the satellite as described in Table 4. In
all the simulations, the desired pointing was achieved after 10 orbital periods.

Figure 8: Monte Carlo simulation for the nadir pointing mode
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6 CONCLUSIONS

This paper presents the ADCS design for the ST3LLARsat1 mission. The attitude control system for
the different ADCS operational modes, including detumbling and nadir pointing, relies on pure
magnetic actuation. By employing b-dot algorithms, which exhibit superior effectiveness in terms of
power consumption and deorbit time, the angular velocity can be reduced from a worst-case scenario
of 90 deg/s for each axis to 1 deg/s within a 2.25 orbital time. Additionally, the sliding mode
controller for nadir pointing achieves pointing errors lower than 5 deg. Using photodiodes,
magnetometers, and gyroscopes as commercial-off-the-shelf (COTS) sensors and implementing a
hybrid approach combining the Triad and Extended Kalman Filter (EKF) algorithm result in attitude
estimation accuracy lower than 3 deg. A Monte Carlo campaign with uncertainties in mass
properties, initial attitude, and rate values, validate the algorithms’ performance in these conditions.
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