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Hunga Tonga–Hunga Ha'apai January 15, 2022 explosion simulation (120 Mt yield)
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Pre-impact
Immediate
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Geologic time
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Boslough, MB, et al. (1995) Axial focusing of impact energy in the 
Earth’s interior:  a possible link to flood basalts and hotspots,  In G. 
Ryder  et al., Eds., Proceedings of the Conference on New 
Developments Regarding the KT Event and Other 
Catastrophes in Earth History, pp. 541-550.

~53 minutes after impact

Boslough, MB, Taylor, MA, (2006) 
Supercomputer simulations of 3D 
seismic waves from a giant impact, 
Sandia Report.  SAND2006-1542A.
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S. Monserrat et al.,
"Meteotsunamis: atmospherically induced destructive

ocean waves in the tsunami frequency band.” 
Nat. Hazards Earth Syst. Sci., 6, 1035–1051, 2006 

Proudman resonance 

U=c, i.e. the atmospheric disturbance translational speed (U ) equals 
the longwave phase speed c= √gh of ocean waves

Froude number (Fr = U/c)

Coupling is strong when Fr ≈ 1.0

“Consequently, these atmospheric fluctuations can produce a significant
sea level response only when some form of resonance occurs between
the ocean and the atmospheric forcing.”

Planetary Defense Conference
Flagstaff, Arizona, USA

April 15-19, 2013



4.6-km deep ocean has same Fr as Jupiter

Proudman Resonance   

Fr=1

SL9 wave 
Fr=1.6
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Conclusion

• Tunguska-scale plume-forming impact can 
generate reaction impulse that raises atmospheric 
pressure over a large area on time scale 
sufficiently close to the Proudman resonance in 
deep water (>4 km) to produce dangerous 
meteotsunami.

• This effect needs to be quantified and included in 
NEO hazard assessment.

Planetary Defense Conference
Flagstaff, Arizona, USA

April 15-19, 2013



Surface pressure profiles from 5 Mt airburst
with Christopher Moore & Vasily Titov (NOAA Center for Tsunami Research)
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Airburst tsunami

t = 8m 40s
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4. Conclusions
• Differences among codes and assumptions are not likely to 

contribute significantly to uncertainty in tsunami generation
• Blast and rarefaction do not appear to be strongly coupled to 

tsunami except possibly in deep water
• Other atmospheric coupling mechanisms have not been 

eliminated: plume ejection, steam explosion, & toroidal vortices 
• We should do bounding cases for all identified possible 

mechanisms to put a cap on AGT risk
• It is unlikely that AGT contributes significantly to NEO risk 

because low probability, but we have not shown that yet

2nd International Workshop on 
Asteroid Threat Assessment: 
Asteroid-generated Tsunami and 
Associated Risk Assessment

NOAA
Pacific Marine Environmental Laboratory
Seattle, WA
Aug 23-24, 2016



Airburst-Generated Tsunami by Various Coupling Mechanisms
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2. Proposed coupling mechanisms
• Blast and rarefaction waves 
• Expanding toroidal vortices
• Plume ejection and collapse

Planetary Defense 
Conference

Tokyo, Japan, May 15-19, 2017
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Blast and rarefaction wavesPlanetary Defense 
Conference

Tokyo, Japan, May 15-19, 2017



Maximum wave heights
Impact 400 km away in middle of oceanic plane

Max depth at shore = 25 m, Flooded area = 46.5 km2

Planetary Defense 
Conference

Tokyo, Japan, May 15-19, 2017



Maximum wave heights
Impact on deepest part of Japan Trench

Max depth at shore = 25 m, Flooded area = 46.5 km2

Planetary Defense 
Conference

Tokyo, Japan, May 15-19, 2017



Conclusions
• Large airbursts can produce significant water gravity waves 

leading to regional coastal threat.
• Rarefaction “suction phase” appears to be to be much more 

strongly coupled to water wave than compressional air blast.
• Coastal inundation does not depend strongly on source 

distance over studied range.
• Water depth increases amplitude but decreases wavelength.
• Smaller airburst coupling mechanisms have not been 

eliminated: plume ejection, steam explosion, & toroidal vortices
• Air-driven impact and airburst tsunamis may be significant 

contributors to overall risk and need to be quantified.

Planetary Defense 
Conference

Tokyo, Japan, May 15-19, 2017
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120 Mt airburst simulation

90 km

80 km



Dallas Houston

Hunga Tonga–Hunga Ha'apai January 15, 2022 explosion simulation (120 Mt yield)
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120 Mt source
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2023 PDC asteroid impact simulation (~10 Gt yield)



2023 PDC impact (~10 Gt yield) Target: Dallas, Texas, USA
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2023 PDC impact (~10 Gt yield) Target: Jebba, Nigeria



2023 PDC impact (~10 Gt yield) Target: Jebba, Nigeria
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Black Swan example: Unexpected catastrophe cascade

Liang et al, (2023), Ice tongue calving in Antarctica triggered by the Hunga Tonga volcanic 
tsunami, January 2022, Science Bulletin (2023).



2023 PDC impact (~10 Gt yield) Target: Dallas, Texas, USA



Possible catastrophe cascade scenario:
1) Impact, 2) Lamb wave, 3) Tsunami, 4) Bathometric focusing, 5) Ice shelf fracture 6) Loss of buttressing, 

7) Runaway grounding line retreat, 8) Ice sheet collapse, 9) Abrupt sea level rise   

Hulbe, C (2017) Is ice sheet collapse in West Antarctica unstoppable? Science, doi:10.1126/science.aam9728

Global warming releases the safety, asteroid impact pulls the trigger



Conclusions
• Impacts and airbursts generate global tsunamis even if they strike on land.
• The threshold for dangerous tsunami generation is smaller than we thought.
• The Hunga Tonga-Hunga Ha’apai explosion provides an existence proof.
• Global warming is a threat multiplier for impact risk.
• We have identified a “black swan”. But what haven’t we thought of yet?

Future work and recommendations
• Full sensitivity analysis and uncertainty quantification.
• Development of warning systems (Lamb wave tsunami may be first to arrive).
• Seek collaboration with volcanic hazards and tsunami hazards communities.
• Seek validation opportunities by predicting paleotsunami deposit locations.


