Page-1

CSQ-51 Summary

Question	Knowledge	Observables	Measurement	Tools & Models	Policies / Benefits
	Advancement Objectives		Requirements		
How we can improve	A) high spatial resolution	Gravity waves	measurements at	GNSS receivers,	Support the
the understanding of	measurements of the	Acoustic waves	frequency of higher	Ionosonde networks	emergency plans
lithosphere-	total electron content of	Ionosphere density	than ~3.3 mHz	and airglow cameras	during large
atmosphere-	the ionosphere		measurements every	Gravimeters	earthquake and
ionosphere coupling			1min		tsunami
mechanisms?	B) improve the	Atmospheric	Atmospheric profiles	Atmospheric profiles	And major Volcanic
	measurements of	temperatures	from different sources	Polar and	eruption
	Atmospheric anomalies	Clouds shapes		Geostationary	Improve the
	(short term)			meteorological	knowledge of
				satellites	interactions
	C) Measure short term	Atmospheric pressure	Atmospheric profiles		between
	atmospheric pressure		from different sources		lithosphere-
	waves triggered by				atmosphere-
	earthquakes, explosions,				ionosphere
	volcanic eruptions,				
	tsunamis,				

CSQ-51 Narrative

Tsunami Early Warning System for the Indian Ocean (https://www. gitews.org/; Falck et al., 2010), and so forth. These systems largely rely on "classic" geophysical data sets. However, despite numerous efforts, the classic methods still fail to correctly estimate the magnitude of large earthquakes (Mw > 8) in real time, and therefore, they also fail to correctly estimate the tsunami potential. In response to this need, it has recently been suggested that the ionosphere-based technique could, in future, present a novel approach for Natural Hazard-detection in near-real time (e.g., Savastano et al., 2017).

The ionosphere can be strongly perturbed by disturbances in the geomagnetic field, such as geomagnetic storms and substorms. In addition, the magnetic field plays an important role in the propagation of plasma perturbations. The ionized particles are not free to move horizontally, as they are confined by the Earth's magnetic field. As a result, any movement of the neutral air in the meridional direction will blow ionization along the magnetic field.

Impulsive forcing from the Earth's surface occurring due to earthquakes, explosions, volcanic eruptions, tsunamis, and so forth triggers atmospheric pressure waves. Depending on their frequencies, these atmospheric waves can be distinguished as acoustic and gravity waves. The acoustic waves are characterized by frequencies higher than the acoustic cutoff frequency (ω a), that is, higher than ~3.3 mHz. The acoustic waves are longitudinal waves in which particle moves in the direction of the wave propagation.

During earthquakes, vertical displacements of the ground or of the ocean floor induce perturbations in the atmosphere and ionosphere (Figure). The ionospheric perturbations, called coseismic ionospheric disturbances (CSID), are usually detected ~8–9 min after an earthquake. The Rayleigh surface waves generated by earthquakes propagate along the Earth's surface and induce acoustic waves that ~8–9 min later can be registered in the ionosphere, similarly to CSID generated by the coseismic crustal piston-like motion (Figure).

