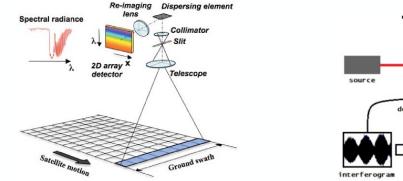


EE11 Mission Information Day -NITROSAT System Development

Arnaud Lecuyot ESA ESTEC 20/10/2021

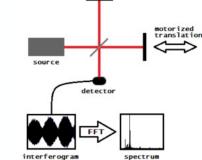
ESA UNCLASSIFIED – For ESA Official Use Only

Repeat of main requirements (Level 1 aka radiance)


٠	Measurement Technique	VIS and TIR spectrometric imagery		
•	Measurement Area	Land within +/- 55 deg Lat, possibly shipping routes, full cover (no gaps)		
٠	Measurement Repeats	Between 1 week and 1 month		
•	Spectrometric range	400-490 nm for VIS and	925-975 cm ⁻¹ for TIR, goal 750-1250 cm ⁻¹	
			10.25-10.81 μm	8.0-13.3 µm
٠	Spectral Resolution	0.6 nm for VIS and 1.6 cm ⁻¹ for IR, goal 0.5 cm ⁻¹		
•	Spatial Resolution	500 m, goal 250 m		
•	Optical quality	SPSF requirement, and MTF integrated energy above Niquyst < 10% of total		
٠	Radiometric Sensitivity	VIS SNR 600 with goal 1200, TIR NEDT 0.2 K with 0.05 K goal		
٠	Radiometric Accuracy	ARA 5% VIS, 0.5 K TIR		

💳 📰 📲 🚍 💳 🛶 📲 🔚 📰 📰 📲 📰 🚔 📰 🛶 🚳 🍉 📲 🗮 📰 📾 🏜 🛊 🔸 材 the European space agency

Mission Challenges from a technical point of view



- NITROSAT has classical mission architecture: 1 Satellite, 1 GS, FOS/PDGS, VEGA-C launcher
- Most challenges are thus in the payload, including 2 passive optical spectrometers, 1 in VIS and 1 in TIR
 - Possible combination of high repeat (2/m) and resolution (500 m) could lead to high swath for some options
 - High sensitivity requirements (0.05 K for TIR/600 SNR for VIS).
- For the IR instrument also high spectral resolution challenging requirement (1.6 0.5 cm⁻¹)
- VIS and TIR spectrometer instruments are established types and have plenty of heritage
 - Main options for spaceborne imaging spectrometers are dispersive versus FTS principles
 - OMI, TROPOMI, S5 for VIS
 - IASI, IRS, MIPAS, CO2M (SWIR) for TIR
 - Requirements considered feasible overall

Principle of dispersive pushbroom spectrometer

For illustration only (not NITROSAT-specific)

Principle of Fourier Transform spectrometer For illustration only (not NITROSAT-specific)

3

Mission Challenges from a technical point of view

- ESA identifies the following main trades linked to these challenges
 - Orbit type
 - Inclined orbit could allow better repeat than SSO, at cost of non-standard platform/spacecraft
 - ESA confirmed internally that non-SSO orbits are reachable from VEGA-C CST launch
 - Swath vs repeat and instrument configuration
 - Swath ranges likely from ca. 80 to over 200 km or more
 - Considering resolution & oversampling needed may need up to ~1000 px IR detector length, seen as driver
 - Doubling smaller instruments to achieve larger overall swath could also be an option
 - VIS instrument likely needs ca. 2x IR instrument swath (only images in daytime)
 - IR instrument concept
 - Quite likely that step-and-stare FTS is needed due to stringent requirements, which is a complex instrument
 - If so, potential critical issue in performance at swath edges could lead to needing to do FT on-ground (with critical impact on data flow)

Key Technologies

- Detector technologies for TIR instrument MCT detector most likely, including active cooling
- If new detectors are required they will need pre-development and qualifications
- If FTS spectrometry is selected for IR, fine mechanism, metrology and light source are key technologies
- If special devices are needed for edge-of-swath correction they will need special pre-developments

