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ABSTRACT 

 

The sloshing effect of liquids occurring within spacecraft’s fuel tanks is a determinant 

factor in the pointing performance of space missions with high-reactivity needs. 

Accurately modelling this phenomenon allows anticipating its detrimental effects on 

satellite control, and thus possibly improve the tranquillisation time after maneuvers.  

 

This paper examines a modelling trade-off between the quick but low transient 

representativeness analytical approaches and the slow but accurate Computational 

Fluid Dynamics (CFD) simulations. Based on the hypothesis that the problem presents 

underlying regularity characteristics, and considering that dataset can be generated 

thanks to CFD simulations, Machine Learning techniques are explored, from a Proof 

of Concept approach to a fully representative agile space mission.  

 

Using Machine Learning techniques such as Multi-Layer Perceptron (MLP), Long-

Short Term Memory (LSTM) or Convolutional Neural Network (CNN), this study 

demonstrates high-accuracy results whilst remaining efficient in terms of computation 

time. Furthermore, its industrialization capability for future missions is assessed, 

providing promising results. For instance, it is shown that a relatively small dataset is 

needed to reach high representativeness and robustness. Besides, a methodology is 

developed to implement these models into a Guidance, Navigation and Control (GNC) 

closed loop simulator based on Matlab/Simulink.   
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1 INTRODUCTION 

1.1 Context and missions 

The central theme of the study is in the context of maneuverable space missions with a need for 

responsiveness and/or agility. 

 

The angular acceleration profiles resulting from fast maneuvers stress the dynamics and amplify 

errors and non-linearities. The residual dynamics at the end of the maneuver lead to pointing 

transients that degrade line-of-sight stability, delaying the beginning of the next imaging 

opportunity. To avoid degrading overall agility and thus maximize system efficiency, it is necessary 

to minimize these settling times. This becomes even more important in the context of new 

acquisition principles, where each imaging opportunity requires a large number of small maneuvers. 

Since most of the error results from a mismatch between the actual dynamics and the model used to 

establish the guidance profile, it is important to improve the accuracy of this model. 

 

Another related application area concerns the so-called "gyroless" architectures, which are 

becoming more and more common, where attitude determination requires filtering of noisy stellar 

measurements. In the absence of an inertial reference system, this filtering must rely on propagating 

a model of the dynamics rather than the gyroscopic measurements. Such dynamic filters are 

implemented onboard in the attitude control loop as well as on the ground for post-processing 

geolocation and geometric correction of images. 

1.2 Study objective and potential applications 

The objective of the study is to demonstrate that the technology is mature enough to establish, 

through Machine Learning techniques, a substitution model to represent the effects of propellant 

sloshing during manoeuvres. A model established by this approach will be specific to a given agile 

mission, with fixed tank geometry and fluid characteristics, and a reduced parameter space for 

amplitude, duration, shape, and direction of manoeuvres. The aim is to prove that the precision of 

this model will improve the propagation error with respect to simplified models.  

 

The resulting model will be computationally efficient, making it suitable for deployment in the 

design and validation process, as well as in operations. Such a model will be generic enough to be 

useful at various stages of the mission.  

 

During the design phase: 

 For estimating closed-loop performance (settling time). 

 For attitude restitution (image geolocation, deconvolution). 

 For functional validation. 

 

During the mission itself: 

 Open-loop propagation in a ground filter for attitude restitution  

 Closed-loop operation in an embedded dynamic filter. 

1.3 Reminder on the interest of AI based methods for modelling the sloshing phenomenon 

Currently, there is no macroscopic mathematical model to represent sloshing phenomena during 

attitude manoeuvres, except for conservative approaches suitable for design stages [1]. Such a 

model should be able to calculate the reaction torques (and forces) transmitted by the fluid to the 

satellite via the tank wall, depending on the current angular acceleration of the satellite and the 

current state of the fluid (or the history of the angular acceleration). However, due to the highly 

non-linearity and coupled nature of these phenomena, a macroscopic mathematical model probably 
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does not exist, except for some simple regimes (e.g., capillary regime at very low accelerations or 

full tank regime). 

 

Recent advances in understanding the sloshing of propellants in microgravity have made it possible 

to simulate these phenomena accurately using numerical calculation codes [2]. The level of 

confidence in these CFD approaches have been significantly consolidated, particularly thanks to the 

FLUIDICS experiment on the International Space Station [3], as experimental data acquired in 

microgravity conditions made it possible to calibrate the numerical models precisely. Unfortunately, 

these numerical models are still too computationally expensive to be implemented in real-time, 

either on-ground or on-board. 

 

We thus find ourselves in a situation where the application of Machine Learning techniques is 

naturally necessary: 

 The solution to the problem does not have a simple structure that allows it to be summarized 

by an analytical formulation or even an ad-hoc heuristic. 

 We can assume that the problem has underlying regularity characteristics, which could be 

extracted from the training data. 

 We can generate training data using CFD calculation. We even have real experimental data 

available to potentially verify the validity of the training dataset on a few points. 

 

2 REFERENCE CASE 

During this study, we analyzed two reference cases. Firstly, we followed a proof-of-concept 

approach with a simplified tank and manoeuvre profile. Then, we considered a tank and 

manoeuvres representative of an agile mission. While we will mainly focus on the second case in 

this paper, we will also make some comments on the proof-of-concept analysis.  

2.1 Proof-of-concept reference case (PoC Case) 

The proposed tank for the study is a spherical tank with a diameter of 10cm. This geometry is 

simple and presents many symmetries that can be exploited during learning. The computational 

domain is limited due to the small size of the tank and the relaxed constraint on mesh quality. 

Indeed, the comparison between experimental data from the ISS experiment with this tank 

(FLUIDICS) and open-loop simulations with Flow3D allowed us to optimize the physical models, 

numerical methods, and determine the mesh fineness. 

 

To limit the scope of the study, we propose to generate reference cases with a single filling ratio of 

50% (in the range where sloshing phenomena is the most significant).  

 

Therefore, this model has a triple advantage: 

• It does not require any setup effort. 

• It has already been validated with real microgravity data [2]. 

• Its mesh has been optimized to have a low calculation time compared to automatic meshing. 

 

In terms of maneuvers, they have been simplified as a succession of bang-coast-bang profiles in 

acceleration with an initial and final velocity condition to be achieved in a determined time, 

interspersed with constant velocity profiles (which correspond to the shooting). Additionally, it is 

important to note that these maneuvers only affect a single axis.  
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Figure 1: Example of manoeuvre.  

 

During a mission, layout constraints do not allow the tanks to be placed exactly at the satellite 

center of mass. To represent this phenomenon, it was decided to place the tank on the Z-axis so that 

it is also subjected to the liquid forces, not just the torques. It was decided that the tank will be 

placed at a distance of -200 mm on the Z axis.  

2.2 Mission representative reference case (MR Case) 

In comparison to the previous tank, this one is significantly larger. It is also a spherical tank, but 

with a diameter representative of an Earth observation agile mission, measuring 1.16m (817L). We 

have considered three filling ratios, namely 20%, 50%, and 80%. 

 

When it comes to the maneuvers, we aim to have a liquid initial state that differs from the one 

provided by the CFD simulation initialization. To achieve this, we need to conduct at least two 

maneuvers: the first one to disturb the liquid state, and the second one to start with the disturbed 

initial state. This approach will help us cover the effects of "memory". 

 

On the other hand, we want to maximize the number of different cases while keeping the 

simulations as short as possible. Therefore, we plan to use a sequence of two maneuvers, as 

illustrated in Figure 2. This satisfies the requirement of having at least two maneuvers and short 

CFD simulations. The study will focus on the model's ability to be representative over a sequence of 

maneuvers. 

 

For this study, the tank is positioned at a fixed distance of -446mm from the satellite center of mass.  
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Figure 2: Example of manoeuvre. 

 

It is worth noting that this time the maneuvers will be about all three axes. 

 

3 DATA GENERATION 

First, data for the maneuvers is generated to feed into CFD simulations. Then, this data, along with 

the outputs from the CFD simulations, is used to train the Machine Learning model. 

3.1 Maneuvers Design of Experiment (DoE)  

The experimental plan should offer the best parametric coverage while minimizing the number of 

simulations to be performed. 

 

In the table below, we can find all the parameters scanned for maneuvers data generation regarding 

the MR Case. Furthermore, the domain associated with each parameter is defined so that it is 

representative of an agile mission. As a reminder, the number of chained maneuvers is fixed and 

equal to two. 

 
Table 1: Maneuvers Design of Experiment. 

Parameter Domain 

X velocity at the end of 1st maneuver [0.1, 1] deg/s 

Y velocity at the end of 1st maneuver [0.1, 1] deg/s 

Z velocity at the end of 1st maneuver [0.1, 1] deg/s 

X velocity at the end of 2nd maneuver [0.1, 1] deg/s 

Y velocity at the end of 2nd maneuver [0.1, 1] deg/s 

Z velocity at the end of 2nd maneuver [0.1, 1] deg/s 

Imaging time at 1st maneuver [2, 30] s 

Imaging time at 2nd maneuver [2, 30] s 

Angle swept during 1st maneuver [1, 30] deg 

Angle swept during 2nd maneuver [1, 30] deg 

Rotation direction of 1st maneuver: X component [-1, 1] 

Rotation direction of 1st maneuver: Y component [-1, 1] 

Rotation direction of 1st maneuver: Z component [-1, 1] 

Rotation direction of 2nd maneuver: X component [-1, 1] 

Rotation direction of 2nd maneuver: Y component [-1, 1] 

Rotation direction of 2nd maneuver: Z component [-1, 1] 

Tank filling ratio {20, 50, 80} % 
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Sweeping method 

The number of simulated maneuvers is limited due to the computational cost of CFD simulations. 

600 simulations were considered a good compromise between the CFD and AI teams. The strategy 

chosen to define the DoE, and thus to sweep all the parameters defined in Table 1, is Latin 

Hypercube sampling (see Figure 3). This sampling follows a simple rule: two sampling points in the 

variable space never share the same value for a given variable. Additionally, a strategy is proposed 

to maximize space filling (see Figure 4). 

 

 
Figure 3: Latin Hypercube sampling strategy. 

 

 
Figure 4: Strategy to maximize space filling.  

 

3.2 Computational Fluid Dynamics Simulations 

The maneuvers generated as described previously were implemented and executed using the CFD 

software FLOW3D. This software was validated by comparison with FLUIDICS results and was 

used during the PoC study. In Figure 5, screenshots of the gas bubble within the tank for different 

filling ratios are illustrated. In Figure 6, an example of forces and torques obtained by CFD 

simulation is illustrated. This type of data will be used for training the Machine Learning model.  
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Figure 5: Position and deformation of gas bubble for filling ratio of 80% (left), 50% (center) and 20% (right). 

 

 
Figure 6: Examples of forces and torques obtained by a CFD simulation.  

 

4 SOLUTION ARCHITECTURE 

The objective is to predict the fluid forces and moments inside the tank based on the input of 

satellite angular velocity and acceleration. The initial analysis of the data, where a linear relation 

between some inputs and outputs was found, led us to construct a hybrid architecture for the 

prediction, one part being linear, and another non-linear used for the residual component. Here, we 

present some specificities that guided our choice of architecture. 

 

Firstly, the input variables are exogenous, meaning they differ from the variables to be predicted. In 

contrast, the variables used in self-prediction cases (for future time steps) are called endogenous. 

We particularly want to exploit the linear relation between the output data and the exogenous input 

data. 

 

Furthermore, we observed that the prediction quality by a linear model was deteriorated between 

the first and the second maneuver. Assuming this degradation is due to the fact that the fluid does 

not return to its initial state between maneuvers, we want to study methods that can abstract 

information about the previous state. For this purpose, we will study Deep Learning methods that 

include hidden states. 

 

Finally, the architecture should respect, as much as possible, the business constraints on data 

availability. In this case, it is difficult to access prior knowledge of fluid forces and torques during 

flight. While this data can be used during the training phase, real-time prediction should not rely on 

its availability. Therefore, we will strive to minimize our dependence on output data for the 

prediction phase. 

 

 The generic solution selected is presented in Figure 7. It should be noted that at this stage, only the 
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data flow and method types are defined: any neural network can be implemented, as long as it 

respects the specified input and output data. Our method operates in a distinguished way between 

the learning phase (blue), where the output data is available, and the prediction phase (orange), 

where it is not. During the training phase, the following are trained: 

 The inverse linear regression, which predicts angular accelerations based on forces and 

torques. 

 A neural network that predicts the residuals of the linear regression based on angular 

accelerations. 

The prediction phase follows the schema in reverse order. The angular accelerations are provided to 

the neural network, which predicts the residuals. These residuals allow the reconstruction of the 

angular accelerations, as they would have been altered by the linear regression. Finally, these 

reconstructed accelerations are transformed by linear regression (orange) to obtain the forces and 

torques. 

 

 
Figure 7: Architecture selected for this study. In blue, path used during the training phase. In orange, path used 

during the prediction phase.  

 
Comment on the PoC Case 

Within the PoC Case study, this linear relation between inputs and outputs was not observed. 

Therefore, the hybrid approach presented could not be used, and prediction was done completely 

with neural networks. This fact shows that the Machine Learning solution shall be adapted to the 

current use case.  

 

 

5 MODEL EVALUATION 

5.1 Evaluation frame 

The data is divided into three subsets:  

 The training data is used to train the models.  

 The validation data is used to ensure the genericity of the learned model.  

 The test set is the last set on which no learning is performed. The final evaluation is 

generally carried out on this set.  

 

The following distribution is proposed: 
Table 2: Data distribution. 

 Training Validation Test 

Simulations number 360 180 60 

Ratio 60% 30% 10% 

 

This distribution ensures significance in both learning and validation. Since the remaining data for 
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testing is very small, we will perform our evaluation on the set formed by the test and validation 

data. 

 

The model is compared to several reference methods. These methods are: 

 A linear model (LM) that predicts the output with a single linear regression. 

 The non-hybrid Multi-Layer Perceptron (MLP) model implemented during the PoC Case, 

with a lag of 30, i.e. the prediction is made based on the 30 previous time steps. 

 A hybrid implementation of this same MLP model (h-MLP). 

 

Finally, the metric Mean Squared Error (MSE) normalized is used for the performance evaluation.  

5.2 Results on initial data 

The prediction score obtained for each model is illustrated in the table below.  
Table 3: Prediction score on the validation and test data. LSTM stands for Long Short-Term Memory. GRU 

stands for Gated Recurrent Unit. CNN stands for Convolutional Neural Network.   

Model Fx Fy Fz Tx Ty Tz Average 

MLP 0,3429 0,3901 0,6678 0,3846 0,3455 0,1727 0,3648 

LM 0,0193 0,0248 0,2992 0,0250 0,0194 0,2162 0,0260 

h-MLP 0,0191 0,0250 0,4705 0,0250 0,0191 0,2224 0,0265 

h-LSTM 0,0182 0,0239 0,3900 0,0239 0,0182 0,1934 0,0248 

h-GRU 0,0190 0,0243 0,4559 0,0243 0,0190 0,2042 0,0258 

h-CNN 0,0175 0,0233 0,4084 0,0233 0,0174 0,2183 0,0246 

Mass-

spring 

0.3286 0.3580 0.0036 N/A N/A N/A N/A 

 

Firstly, it appears that adding the linear aspect has a major impact on the score: the error is reduced 

by a factor greater than 30. The three hidden state models present similar results, with a slight 

advantage for hybrid Convolutional Neural Network (h-CNN). These latter models slightly improve 

the hybrid model without hidden state, h-MLP, which itself offers an improvement over linear 

prediction. 

 

The improvements offered by the hybrid models are therefore significant, except for the variable Fz, 

whose prediction is of poor quality (worse than the linear model), regardless of the model. A 

probable explanation would be related to the low reliability of linear regression: the linear relation 

seems to be less verified on this data than on the other learned variables. The residuals are therefore 

more diffuse, and the neural network fails to model their behavior.  

 

Figure 8 shows the results for all variables of the h-GRU model compared to real data and linear 

prediction. The previous observations apply to the prediction of all variables, except for Fz, whose 

prediction is coarse and slightly worse than that of the linear model. 

 

Figure 9 shows that, while the predictions of the h-CNN model and the original data are almost 

superimposed on the entire dataset, the mass-spring model exhibits some inaccuracies: amplitude 

errors during maneuvers, and incorrect oscillations before and after maneuvers. Besides, Figure 10 

shows that the mass-spring model does not capture the high-frequency content of the CFD signal.  
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Figure 8: Prediction with h-GRU model, compared to linear model and CFD data. 

 

 
Figure 9: Prediction comparison between h-CNN and mass-spring models. 

 
Figure 10: Frequency content of forces signals for different models. 
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The table below presents the training time for each method:  
Table 4: Performance of each model. 

 MLP h-MLP h-LSTM h-GRU h-CNN 

Number of parameters 1876 2964 51460 50628 38308 

Epoch number 25 26 17 22 19 

Training time (s) 1052 1118 712 768 665 

 

Comment on PoC case 

Since for the PoC case this linear relation between the variables did not exist, the predictions score 

is significantly worse. In Figure 11, a prediction with the best model for the PoC case (MLP with 

lag) is shown. However, it still remains better than the mass-spring model.  

 
Figure 11: Prediction for PoC case with MLP model with lag. 

 

5.3 Results on additional data – robustness analysis 

In this section, we propose to delve deeper into the evaluation of our models by assessing their 

robustness. We aim to evaluate the models' ability to generalize the learned phenomena. To achieve 

this, we will first analyse the models' sensitivity to the size of the training sample. Additionally, we 

suggest generating new data to investigate whether the models trained on the 600 initial simulations 

can be applied to other data. Specifically, we will generate simulation data with different tank 

filling ratios (multi-ratio data) and with more consecutive maneuvers (multi-maneuver data).  

 

For both cases, the prediction score (MSE) remains very similar. An example of prediction for 

multi-ratio data is shown in Figure 12, and for multi-maneuver in Figure 13. Furthermore, Figure 14 

shows an oscillation of the MSE depending on the maneuvers, and not a monotonic increase of the 

error measurement. Therefore, the degradation observed previously appears to be bounded. 
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Figure 12: Machine Learning model prediction for filling ratios of 10% (above) and 90% (down). 

 

 
Figure 13: Machine Learning model prediction for profiles with 10 maneuvers. 

 

 
Figure 14: Fx MSE prediction distribution as function of the maneuver. 
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5.4 Training data size impact  

In this section, the impact of the training data size on the prediction error is assessed. This 

evaluation is performed on the 600 initial simulations, with the model that provides the best scores, 

the h-CNN. In the previously presented results, 60% of the data was used for training. We want to 

know if equivalent quality results can be obtained with less data. 

 

 
Figure 15: Prediction MSE as function of the number of simulations used for the training. 

 

It can be observed that the final order of magnitude is obtained from about only 20 simulations. 

This result is fundamental for the applicability of our method, since it reduces the necessary CFD 

simulations to parameterize our method. 

5.5 Computational time performance 

We finally discuss the performance of the models in terms of computation time. Generating data 

through CFD simulations is very expensive. In contrast, the mass-spring model predicts the result 

quasi-instantaneously. Regarding models based on Deep Learning methods, two distinct 

computation times need to be considered: the training time and the prediction time. 

 

The model training takes place only once for each use case. In the case of training on about 360 

simulations, we estimate the training time of Deep Learning models to be around 20 minutes. To 

include hyperparameter optimization, 30 trials of different configurations were performed, for a 

total time of 25 hours. Two significant levers can be used to reduce this total time: 

 The automatic stopping of the hyperparameter optimization search: we estimate that we can 

settle for half of the 30 trials performed to obtain a converged solution; an automatic 

stopping criterion would optimize the number of trials. 

 The reduction of the number of simulations in the training set: we have seen that the errors 

obtained with 360 simulations can actually be obtained with only about twenty simulations. 

Reducing the amount of input data for learning can significantly reduce the time of each 

execution. 

The prediction time is the time required to predict the outputs of a simulation on new data with a 

previously trained model. The following table presents the prediction times (in seconds) for one 

simulation with n maneuvers for each of the models, compared to the mass-spring model and an 

estimate of the CFD simulation time: 
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Table 5: Computational time (in seconds) of each method. 

N° Maneuvers MLP h-MLP h-CNN h-LSTM h-GRU LM Mass-spring CFD 

2 0.080 0.194 0.199 0.320 0.319 0.150 0.282 480 

10 0.100 0.430 0.456 1.004 1.055 0.331 0.285 2700 

 

We notice the significant difference in orders of magnitude between the prediction times of the 

different models and the CFD simulation times: the latter are about 1000 times higher. Therefore, 

with a trained model, it is possible to perform 1000 times more simulations for a constant 

computation time budget. 

6 CLOSED LOOP SIMULATIONS: MACHINE LEARNING IN SIMULINK 

A final section is dedicated to the validation of the Machine Learning model embedded into a 

simplified Guidance, Navigation and Control (GNC) simulator (cf. Figure 16) in Matlab/Simulink. 

This is a key asset because it will allow us to implement the Machine Learning model, previously 

coded in Python, all along the life cycle of the project (feasibility, design and validation phases).  

 

 
Figure 16: GNC simplified simulator (Simulink model). 

 

Within this simulator, three models were implemented in the block “Liquid Interface” and 

compared: 

 The Machine Learning model implemented in Python 

 The CFD Model implemented in FLUENT software 

 The mass-spring model 

Note that this closed loop analysis has been only done on the PoC case.  
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Figure 17: Closed-loop comparison prediction (left) and FFT of the signals (right). 

 

For 40 seconds of simulation, the computational time for the three models are: 
 Mass-spring Machine-Learning CFD  

Time[s] 3 150 7480 

 

Once again, we notice that the CFD computational time is an order magnitude above the Machine-

Learning model. Furthermore, this difference is observed for the PoC case, where the tank diameter 

is short (10 cm diameter). We expect a significant increment of this difference with a representative 

case, as the MR case. We expect to carry out this analysis in the short-term.  

7 CONCLUSIONS 

Hybrid AI methods produce high-quality and reliable predictions. 

Hybrid methods presented can accurately predict forces and moments, both in the time and 

frequency domain, with a fidelity to CFD simulation data that is approximately ten times better in 

terms of MSE than simplified models.   

 

The incorporation of contextual knowledge (linear regime) significantly improves predictive 

capabilities.  

The generation and analysis of the data revealed a strong numerical and physical singularity, 

namely its linearity. Exploiting these peculiarities, supported by domain knowledge, guarantees a 

significant improvement in the prediction capabilities. Therefore, we emphasize the importance of 

incorporating domain knowledge in the choice of the models architecture to facilitate the neural 

network's learning task. 

 

Hybrid AI methods are generalizable.  

Robustness analysis concludes that hybrid models trained on a dataset could be applied to predict 

data with different characteristics, such as different filling ratios and numbers of maneuvers. 

Moreover, our experiments on new datasets yield to similar results to those of the initial dataset, 

with comparable error magnitudes.  

 

AI methods are computationally efficient. 

Finally, all the proposed AI methods are particularly efficient in terms of prediction time (after 

training). Like the mass-spring model, AI models are drastically faster than CFD simulations. On 

average 1000 times faster than CFD simulations. 
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