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Tsunami Propagation

Overview:
• Impact tsunamis have shorter wavelengths than

earthquake tsunamis; shallow water model not appropriate
• For ocean-scale propagation want depth-averaged

velocities, reducing simulation from 3 −→ 2 dimensions
• Boussinesq models include dispersion, need elliptic solve

each time step. (This work uses Madsen and Shaffer).

Still need AMR:
• In deep ocean only need

resolution of kilometers
• For coastal inundation

want resolution of meters

Strategy: Boussinesq in deep ocean, switch to SWE near coast
M. J. Berger and R. J. LeVeque asteroids/goal.be



GeoClaw Software www.geoclaw.org

Based on Clawpack (www.clawpack.org)

• 2d library for depth-averaged flows over topography.
• Handles dry cells where depth = 0.
• Well-balanced Riemann solvers for small amplitude waves

on ocean at rest.
• Well balancing and dry cells in conjunction with adaptive

refinement.
• Well validated for earthquake-generated tsunamis.

• Other applications:
Debris flows (Dave George, USGS — D-CLAW)
Storm surge (Kyle Mandli, Columbia)
Dam breaks / river floods (DG, M. Turzewski, UW,

D. Calhoun, Boise State – ForestClaw)
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DART Buoys — Tohoku 2011

Deep Ocean Assessment and Reporting of Tsunamis
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Asteroid Impact Tsunami – Static crater test case

Our tests used the crater with no lip as initial data.
Depth of crater: 1000 m, Depth of ocean: 4000 m.

Initial conditions for 2D Boussinesq:

Full 3D multi-physics hydrocode (ALE3D) was run in
2D axisymmetric mode for this simplified initial condition.

(Darrel Robertson, NASA Ames Research Center).

M. J. Berger and R. J. LeVeque asteroids/hydrocode1.be



Asteroid Impact Tsunami – Static crater test case

Surface at t = 251 seconds transferred as radially-symmetric
initial data for depth-averaged Boussinesq.

Impact placed ≈ 150 km off Washington coast.

M. J. Berger and R. J. LeVeque asteroids/hydrocode2.be



Grays Harbor
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Dispersion leads to
“soliton fission” near coast.
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Fractional step method

ht + (hu)x = 0

(hu)t +
(
hu2

)
x
+ ghηx = ψ

1 Solve elliptic equation for source term ψ:

[I −D11]ψ = −D11

[(
hu2

)
x
+ ghηx

]
+ gh20B1(h0ηx)xx.

=⇒ Difficulties for AMR algorithms.

2 Update momentum by (hu)t = ψ over time step

3 Take step with homogeneous SWE.

M. J. Berger and R. J. LeVeque asteroids/bouss7b.be



Patch-Based Adaptive Mesh Refinement

Δt/2

Δt/2

Δt

Ghost cells on border of level 2 (red grids) interpolated in space
and time from level 1 (black grids), including extra variable ψ.
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Conclusions and Future Work

Demonstrated: proof of concept using both Boussinesq and
Shallow Water model combined with AMR.

But: cannot yet tell how much difference it makes for shoreline
inundation; earlier 1D parameter studies showed significant
differences

• How much does it depend on switching criteria?
Currently switching at 10 meter depth
Have not included “wave breaking” criteria yet

• Make more robust
Some stability problems at patch edges

• Compare with other Bouss models
ForestClaw + Serre-Green-Naghdi

M. J. Berger and R. J. LeVeque asteroids/amr-future2.be
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